已知命題..則是 ** 12.橢圓的焦距為2.則m的值等于 ** 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過(guò)點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過(guò)焦點(diǎn)F1、F2.試寫出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因?yàn)榉匠?i>x 2 + mx + 1=0有兩個(gè)不相等的實(shí)根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因?yàn)椴坏仁?x 2 +4(m ? 2)x + 1>0的解集為R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因?yàn)?i>p或q為真,pq為假,所以pq為一真一假, 

(1)當(dāng)p為真q為假時(shí),

(2)當(dāng)p為假q為真時(shí),    

綜上所述得:m的取值范圍是

14、解:  直線方程為y=-x+4,聯(lián)立方程,消去y得,.

設(shè)A(),B(),得

所以:,

由已知可得+=0,從而16-8p=0,得p=2.

所以拋物線方程為y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)

15、解(Ⅰ) AC與PB所成角的余弦值為.

 (Ⅱ)N點(diǎn)到AB、AP的距離分別為1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)設(shè)雙曲線C的漸近線方程為y=kx,則kx-y=0

∵該直線與圓 相切,∴雙曲線C的兩條漸近線方程為y=±x.

故設(shè)雙曲線C的方程為.又雙曲線C的一個(gè)焦點(diǎn)為,

,∴雙曲線C的方程為:.

(2)由.令

∵直線與雙曲線左支交于兩點(diǎn),等價(jià)于方程f(x)=0在上有兩個(gè)

不等負(fù)實(shí)根.

因此,解得..                       

(3). ∵ AB中點(diǎn)為,

∴直線l的方程為:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步練習(xí)冊(cè)答案