(II)在x軸上是否存在一點(diǎn).使得過點(diǎn)P的直線l交拋物線于D.E兩點(diǎn).并以線段DE為直徑的圓都過原點(diǎn).若存在.請求出m的值及圓心M的軌跡方程,若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

已知曲線C上任意一點(diǎn)到直線x=
3
2
2
的距離與它到點(diǎn)(
2
,0)
的距離之比是
6
2
.   
(I)求曲線C的方程;
(II)設(shè)B為曲線C與y軸負(fù)半軸的交點(diǎn),問:是否存在方向向量為
m
=(1,k)(k≠0)
的直線l,l與曲線C相交于M、N兩點(diǎn),使|
BM
|=|
BN
|
,且
BM
BN
夾角為60°?若存在,求出k值,并寫出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為F1、F2。點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn)。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2。
(i)證明:;
(ii)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

        已知橢圓C的中心在的點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過F1的直線與橢圓交于A,B兩點(diǎn),的面積為4,的周長為

   (I)求橢圓C的方程;

   (II)設(shè)點(diǎn)Q的從標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請說明理由。

查看答案和解析>>

如圖,過圓x2+y2=4與x軸的兩個(gè)交點(diǎn)A、B作圓的切線AC、BD,再過圓上任意一點(diǎn)H作圓的切線,交AC、BD與C、D兩點(diǎn),設(shè)AD、BC的交點(diǎn)為R.
(I)求動(dòng)點(diǎn)R的軌跡E的方程;
(II)設(shè)E的上頂點(diǎn)為M,直線l交曲線E于P、Q兩點(diǎn),問:是否存在這樣的直線l,使點(diǎn)G(1,0)恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長軸長為2
3
,離心率為
3
3
,經(jīng)過其左焦點(diǎn)F1的直線l交橢圓C于P、Q兩點(diǎn).
(I)求橢圓C的方程;
(II)在x軸上是否存在一點(diǎn)M,使得
MP
MQ
恒為常數(shù)?若存在,求出M點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價(jià)為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

<p id="a3xtf"></p>

    19.(I)解:取CE中點(diǎn)P,連結(jié)FP、BP,

    ∵F為CD的中點(diǎn),

    ∴FP//DE,且FP=

    又AB//DE,且AB=

    ∴AB//FP,且AB=FP,

    ∴ABPF為平行四邊形,∴AF//BP!2分

    又∵AF平面BCE,BP平面BCE,

    ∴AF//平面BCE。 …………4分

       (II)∵△ACD為正三角形,∴AF⊥CD。

    ∵AB⊥平面ACD,DE//AB,

    ∴DE⊥平面ACD,又AF平面ACD,

    ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

    ∴AF⊥平面CDE。 …………6分

    又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

    ∴平面BCE⊥平面CDE。 …………8分

       (III)由(II),以F為坐標(biāo)原點(diǎn),F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標(biāo)系F―xyz.設(shè)AC=2,

    則C(0,―1,0),………………9分

     ……10分

    顯然,為平面ACD的法向量。

    設(shè)平面BCE與平面ACD所成銳二面角為

    ,即平面BCE與平面ACD所成銳二面角為45°!12分

    20.(I)證明:當(dāng)

    , …………3分

    , …………5分

    所以,的等比數(shù)列。 …………6分

       (II)解:由(I)知, …………7分

    可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

    21.解:(I)解:由

    知點(diǎn)C的軌跡是過M,N兩點(diǎn)的直線,故點(diǎn)C的軌跡方程是:

       (II)解:假設(shè)存在于D、E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn)。設(shè)

        由題意,直線l的斜率不為零,

        所以,可設(shè)直線l的方程為

        代入 …………7分

       

        此時(shí),以DE為直徑的圓都過原點(diǎn)。 …………10分

        設(shè)弦DE的中點(diǎn)為

       

    22.解:(I)函數(shù)

         …………1分

         …………2分

        當(dāng)

        列表如下:

    +

    0

    極大值

        綜上所述,當(dāng);

        當(dāng) …………5分

       (II)若函數(shù)

        當(dāng)

        當(dāng),故不成立。 …………7分

        當(dāng)由(I)知,且是極大值,同時(shí)也是最大值。

        從而

        故函數(shù) …………10分

       (III)由(II)知,當(dāng)

       

     

     

     


    同步練習(xí)冊答案
    <span id="a3xtf"><del id="a3xtf"><p id="a3xtf"></p></del></span>