8.已知圓的最小值是 A.4 B.6 C.8 D.9 查看更多

 

題目列表(包括答案和解析)

已知圓的半徑為2,、是圓上兩點(diǎn),,是圓的一條直徑,點(diǎn)在圓內(nèi)且滿足,則的最小值為(  )

A.-2              B.-1              C.-3              D.-4

 

查看答案和解析>>

已知圓的半徑為2,、是圓上兩點(diǎn),,是圓的一條直徑,點(diǎn)在圓內(nèi)且滿足,則的最小值為(  )

A.-2 B.-1 C.-3 D.-4

查看答案和解析>>

已知圓C1:x2+y2=1與圓C2:(x-2)2+(y-4)2=1,過(guò)動(dòng)點(diǎn)P(a,b)分別作圓C1、圓C2的切線PM、PN(M、N分別為切點(diǎn)),若PM=PN,則
a2+b2
+
(a-5)2+(b+1)2
的最小值是
34
34

查看答案和解析>>

已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長(zhǎng)為
4
5
5
,且圓心M在直線l的下方.
(1)求圓M的方程;
(2)設(shè)A(t,0),B(t+5,0)(-4≤t≤-1),若AC,BC是圓M的切線,求△ABC面積的最小值.

查看答案和解析>>

已知圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn)M(1 , 
3
).
(1)求圓C的方程;
(2)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線x+y-4=0的距離的最小值;
(3)若直線l與圓C相切,且l與x,y軸的正半軸分別相交于A,B兩點(diǎn),求△ABC的面積最小時(shí)直線
l的方程.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤(rùn)的萬(wàn)元;

    本年度每輛車的投入成本為萬(wàn)元;

    本年度每輛車的出廠價(jià)為萬(wàn)元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤(rùn)為

   

   (II)本年度的利潤(rùn)為

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中點(diǎn)P,連結(jié)FP、BP,

∵F為CD的中點(diǎn),

∴FP//DE,且FP=

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF為平行四邊形,∴AF//BP!2分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………4分

   (II)∵△ACD為正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D,

∴AF⊥平面CDE。 …………6分

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………8分

   (III)由(II),以F為坐標(biāo)原點(diǎn),F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標(biāo)系F―xyz.設(shè)AC=2,

則C(0,―1,0),………………9分

 ……10分

顯然,為平面ACD的法向量。

設(shè)平面BCE與平面ACD所成銳二面角為

,即平面BCE與平面ACD所成銳二面角為45°!12分

20.(I)證明:當(dāng)

, …………3分

, …………5分

所以,的等比數(shù)列。 …………6分

   (II)解:由(I)知, …………7分

可見(jiàn),若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

21.解:(I)解:由

知點(diǎn)C的軌跡是過(guò)M,N兩點(diǎn)的直線,故點(diǎn)C的軌跡方程是:

   (II)解:假設(shè)存在于D、E兩點(diǎn),并以線段DE為直徑的圓都過(guò)原點(diǎn)。設(shè)

    由題意,直線l的斜率不為零,

    所以,可設(shè)直線l的方程為

    代入 …………7分

   

    此時(shí),以DE為直徑的圓都過(guò)原點(diǎn)。 …………10分

    設(shè)弦DE的中點(diǎn)為

   

22.解:(I)函數(shù)

     …………1分

     …………2分

    當(dāng)

    列表如下:

+

0

極大值

    綜上所述,當(dāng)

    當(dāng) …………5分

   (II)若函數(shù)

    當(dāng),

    當(dāng),故不成立。 …………7分

    當(dāng)由(I)知,且是極大值,同時(shí)也是最大值。

    從而

    故函數(shù) …………10分

   (III)由(II)知,當(dāng)

   

 

 

 


同步練習(xí)冊(cè)答案