19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米

∠CAB=60˚.設∠ACD = α ,∠CDB = β .

,

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結OP,∵Q為切點,PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當時,線段PQ長取最小值 …………7分

   (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

即R且R

故當時,,此時b=―2a+3=

得半徑最最小值時⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)過G作GM//CD交CC1于M,交D1C于O。

            • ∵G為DD1的中點,∴O為D1C的中點

              從而GO

              故四邊形GFBO為平行四邊形…………3分

              ∴GF//BO

              又GF平面BCD1,BO平面BCD1

              ∴GF//平面BCD1。 …………5分

                 (II)過A作AH⊥DE于H,

              過H作HN⊥EC于N,連結AN。

              ∵DC⊥平面ADD1A1,∴CD⊥AH。

              又∵AH⊥DE,∴AH⊥平面ECD。

              ∴AH⊥EC。 …………7分

              又HN⊥EC

              ∴EC⊥平面AHN。

              故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

              在Rt△EAD中,∵AD=AE=1,∴AH=

              在Rt△EAC中,∵EA=1,AC=

                …………12分

              21.(本小題滿分12分)

              解:(I)

               

                 (II)

                 (III)令上是增函數(shù)

              22.(本小題滿分12分)

              解:(I)

              單調遞增。 …………2分

              ,不等式無解;

              ;

              ;

              所以  …………5分

                 (II), …………6分

                                       …………8分

              因為對一切……10分

                 (III)問題等價于證明

              由(1)可知

                                                                 …………12分

              易得

              當且僅當成立。

                                                               …………14分

               

               

               


              同步練習冊答案
              闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�