題目列表(包括答案和解析)
已知,(其中)
⑴求及;
⑵試比較與的大小,并說明理由.
【解析】第一問中取,則; …………1分
對等式兩邊求導,得
取,則得到結(jié)論
第二問中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當時,;
當時,;
當時,;
猜想:當時,運用數(shù)學歸納法證明即可。
解:⑴取,則; …………1分
對等式兩邊求導,得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當時,;
當時,;
當時,; …………6分
猜想:當時,,下面用數(shù)學歸納法證明:
由上述過程可知,時結(jié)論成立,
假設(shè)當時結(jié)論成立,即,
當時,
而
∴
即時結(jié)論也成立,
∴當時,成立。 …………11分
綜上得,當時,;
當時,;
當時,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com