已知函數(shù)f(x)= 其中f12+1.f2(x)=-2x+2. (I)在下面坐標系上畫出y=f(x)的圖象, (II)設y=f2的反函數(shù)為y=g(x).a1=1.a2=g(a1). --.an=g(an-1).求數(shù)列{an}的通項公式.并求an, (III)若x0∈[0.).x1=f(x0).f(x1)=x0.求x0. 查看更多

 

題目列表(包括答案和解析)

設h(x)=,x∈[,5],其中m是不等于零的常數(shù),

(1)寫出h(4x)的定義域;

(2)求h(x)的單調遞增區(qū)間;

(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當m=1時,設,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;

查看答案和解析>>

已知函數(shù),f2(x)=()|x-m|其中m∈R且m≠0.

(Ⅰ)討論函數(shù)f1(x)的單調性;

(Ⅱ)若m<-2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;

(Ⅲ)設函數(shù)當x≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.

(1)已知函數(shù)f(x)=2sinx,x∈[0,],試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,]上的“k階收縮函數(shù)”,如果是,請求對應的k的值;如果不是,請說明理由;

(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.

(1)已知函數(shù)f(x)=2sinx,x∈[0,],試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,]上的“k階收縮函數(shù)”,如果是,請求對應的k的值;如果不是,請說明理由;

(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

設h(x)=x+,x∈[,5],其中m是不等于零的常數(shù),

(1)m=1時,直接寫出h(x)的值域

(2)求h(x)的單調遞增區(qū)間;

(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當m=1時,|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;

查看答案和解析>>


同步練習冊答案