③線性回歸方程=bx+a必過(guò),④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系, 查看更多

 

題目列表(包括答案和解析)

下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②回歸方程=bx+a必過(guò)點(diǎn)();
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的是    

查看答案和解析>>

下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②回歸方程數(shù)學(xué)公式=bx+a必過(guò)點(diǎn)(數(shù)學(xué)公式數(shù)學(xué)公式);
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的是 ________.

查看答案和解析>>

下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②回歸方程y^=bx+a必過(guò)點(diǎn)(
.
x
.
y
);
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的是
 

查看答案和解析>>

下列說(shuō)法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

③線性回歸方程=bx+a必過(guò)

④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;

⑤在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.

其中錯(cuò)誤的個(gè)數(shù)是                                                                                                

A.1                     B.2                       C.3                    D.4

查看答案和解析>>

下列說(shuō)法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

③線性回歸方程=bx+a必過(guò);

④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;

⑤在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%;其中錯(cuò)誤的個(gè)數(shù)是                          

A.1                     B.2                       C.3                      D.4

查看答案和解析>>

一、選擇題:(每小題5分,共12小題,滿分60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

A

B

D

C

C

A

C

B

C

A

二、填空題:(每小題5分,共4小題,滿分20分)

13、                  14、

15、                16、   ①  ③ 

三、解答題答案及評(píng)分標(biāo)準(zhǔn):

17解:(I),,

= ?

 …………………………4分

= .

          20090107

          函數(shù)的最大值為

          當(dāng)且僅當(dāng)Z)時(shí),函數(shù)取得最大值為..………6分

          (II)由Z),

            (Z)

          函數(shù)的單調(diào)遞增區(qū)間為[]( Z).………………12分

           

          18、(12分)

          解:(1)設(shè)“這箱產(chǎn)品被用戶接收”為事件,……1分

          .  …………………………4分

          ∴n=2. ……………………………………6分

          (2)的可能取值為1,2,3. ……………7分               

          =,     =,  =,                                         

          的概率分布列為:

          1

          2

          3

          …………10分

           

          =.   …………………12分

          19.解:解法一:(Ⅰ)取AC中點(diǎn)D,連結(jié)SD、DB.

          ∵SA=SC,AB=BC,

          ∴AC⊥SD且AC⊥BD,……………………2分

          ∴AC⊥平面SDB,又SB平面SDB,

          ∴AC⊥SB.……………………………………4分

          (Ⅱ)∵AC⊥平面SDB,AC平面ABC,

          ∴平面SDB⊥平面ABC.

          過(guò)N作NE⊥BD于E,NE⊥平面ABC,過(guò)E作EF⊥CM于F,連結(jié)NF,

          則NF⊥CM.

          ∴∠NFE為二面角N-CM-B的平面角.……………6分

          ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

          又∵NE⊥平面ABC,∴NE∥SD.

          ∵SN=NB,∴NE=SD===,且ED=EB.

          在正△ABC中,由平幾知識(shí)可求得EF=MB=,

          在Rt△NEF中,tan∠NFE==2,∠NFE=

          ∴二面角N-CM-B的余弦值為.………………………………8分

          (Ⅲ)在Rt△NEF中,NF==,

          ∴S△CMN=CM?NF=,S△CMB=BM?CM=2.……………………10分

          設(shè)點(diǎn)B到平面CMN的距離為h,

          ∵VB-CMN=VN-CMB,NE⊥平面CMB,∴S△CMN?h=S△CMB?NE,

          ∴h==.即點(diǎn)B到平面CMN的距離為.………12分

          解法二:(Ⅰ)取AC中點(diǎn)O,連結(jié)OS、OB.∵SA=SC,AB=BC,

          ∴AC⊥SO且AC⊥BO.

          ∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC

          ∴SO⊥面ABC,∴SO⊥BO.

          如圖所示建立空間直角坐標(biāo)系O-xyz.………………………………2分

          則A(2,0,0),B(0,2,0),

          C(-2,0,0),S(0,0,2),

          M(1,,0),N(0,,).

          =(-4,0,0),=(0,2,2),

          ?=(-4,0,0)?(0,2,2)=0,……3分

          ∴AC⊥SB.………………………………………………………4分

          (Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).設(shè)n=(x,y,z)為平面CMN的一個(gè)法向量,

                ?n=3x+y=0

          則                        取z=1,則x=,y=-,………………6分

          ?n=-x+z=0,

          ∴n=(,-,1),

          =(0,0,2)為平面ABC的一個(gè)法向量,

          ∴cos(n,)==.………………………………………………7分

          ∴二面角N-CM-B的余弦值為.………………………………………………8分

          (Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),n=(,-,1)為平面CMN的一個(gè)法向量,∴點(diǎn)B到平面CMN的距離d==.……………………………12

                

          20、(12分)

          解:(1)①當(dāng)直線垂直于軸時(shí),則此時(shí)直線方程為,與圓的兩個(gè)交點(diǎn)坐標(biāo)為,其距離為   滿足題意   ………1分

          ②若直線不垂直于軸,設(shè)其方程為,即     

          設(shè)圓心到此直線的距離為,則,得  …………3分       

          ,,                                    

          故所求直線方程為    ……………………5分                           

          綜上所述,所求直線為   ………6分                  

          (2)設(shè)點(diǎn)的坐標(biāo)為),點(diǎn)坐標(biāo)為

          點(diǎn)坐標(biāo)是                    ………………7分

          ,

            即,      …………8分          

          又∵,∴       ………………10              

           ∴點(diǎn)的軌跡方程是,       

          軌跡是一個(gè)焦點(diǎn)在軸上的橢圓,除去短軸端點(diǎn)。       …………   12分 

           

          21、解:(I) …………………………………………… 2分

            

              所以 ……………………………………………………………………5分

             (II)設(shè)   

              當(dāng) …………………………7分

           …………………………………………9分

              當(dāng)   

              所以,當(dāng)的最小值為 … 12分

           

          22(1)證明:如圖,連接OC,∵OA=OB,CA=CB  ∴OC⊥AB

              ∴AB是⊙O的切線    …………………………………………4分

             (2)解:∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°

              又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,

          ∴∠BCD=∠E

              又∵∠CBD+∠EBC,∴△BCD∽△BEC

              ∴  ∴BC2=BD•BE

              ∵tan∠CED=,∴

              ∵△BCD∽△BEC, ∴

              設(shè)BD=x,則BC=2

              又BC2=BD•BE,∴(2x)2=x•( x+6)

              解得:x1=0,x2=2, ∵BD=x>0, ∴BD=2

              ∴OA=OB=BD+OD=3+2=5   ……………………………………10分

          23.(本小題滿分10分)選修4―4,坐標(biāo)系與參數(shù)方程

          解:(1)直線的參數(shù)方程是………………5分

          (2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t2,則點(diǎn)A,B的坐標(biāo)分別為

          以直線L的參數(shù)方程代入圓的方程整理得到

                    ①     ……………………8分

          因?yàn)閠1和t2是方程①的解,從而t1t2=-2。

          所以|PA|?|PB|= |t1t2|=|-2|=2!10分

          24.(本小題滿分10分)選修4―5;不等式選講

          證明:(1)……………………2分

            …………4分

           當(dāng)且僅當(dāng)時(shí),等號(hào)成立     ……………………6分

          (2)          ax2+by2=(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2。……10分

              

           

           


          同步練習(xí)冊(cè)答案