題目列表(包括答案和解析)
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
如圖,某小區(qū)準備綠化一塊直徑為的半圓形空地,外的地方種草,的內接正方形為一水池,其余地方種花.若 ,設的面積為,正方形的面積為,將比值稱為“規(guī)劃合理度”.
(1)試用,表示和.
(2)當為定值,變化時,求“規(guī)劃合理度”取得最小值時的角的大小.
【解析】第一問中利用在ABC中 ,
=設正方形的邊長為 則 然后解得
第二問中,利用 而=
借助于 為減函數 得到結論。
(1)、 如圖,在ABC中 ,
=
設正方形的邊長為 則
=
(2)、 而= ∵0 < < ,又0 <2 <,0<t£1 為減函數
當時 取得最小值為此時
在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC的外接圓半徑r=,將此結論類比到空間,得到相似的結論為:_________.
| ||
2 |
一、選擇題:1、A2、A3、B4、B5、C6、D7、B8、D9、D10、A
二、填空題:11、1000 12、 13、三條側棱、、兩兩互相垂直的三棱錐中,,則此三棱錐的外接球半徑為 14、(1)8 。2)
三、解答題:
15、(1)∵, ∴, ………(2分)
∴,( 4分),………(6分)
∴或
所求解集為 ………(8分)
(2)∵
∴ ………(10分)
∴ ………(12分)
求的周期為,
遞增區(qū)間
16、解:解析:由題意可知,這個幾何體是直三棱柱,且,,
(1)連結,。
由直三棱柱的性質得平面,所以,則
四邊形為矩形.
由矩形性質得,過的中點
在中,由中位線性質,得,
又平面,平面,
所以平面。 (6分)
(2)因為平面,平面,所以,
在正方形:中,。
又因為,所以平面.
由,得平面. (14分)
17、解:(1)由題意知,
∴
由,可得 (6分)
(2)當時,∵
∴,兩式相減得
∴ 為常數,
∴,,,…,成等比數列。
其中,∴ ………(12分)
18、解:設二次函數,則,解得
∴
將代入上式:
而對于,由已知,得:,解得
∴
將代入:
而4月份的實際產量為萬件,相比之下,1.35比1.3更接近1.37.
∴選用函數作模型函數較好.
19、(1) ………(2分)
(1)由題意;,解得,
∴所求的解析式為 ………(6分)
(2)由(1)可得
令,得 或, ………(8分)
∴當時, ,當時, ,當時,
因此,當時, 有極大值,………(8分)
當時, 有極小值,………(10分)
∴函數的圖象大致如圖。
由圖可知:!14分)
20、解:(1)直線與軸垂直時與拋物線交于一點,不滿足題意.
設直線的方程為,代入得,
設、、
則,且,即或.
∴,為的中點.
∴
∴由或得或.由在軸右側得.
軌跡的方程為.
(2)∵曲線的方程為。
∴ ∴ ,
,且
∴又,,
∴,
∴,∴
∴的取值范圍為
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com