解:當n=2時.代入得C+C=2.排除答案A.C,當n=4時.代入得C+C+C=8.排除答案D.所以選B. 另解:由二項展開式系數(shù)的性質有C+C+-+C+C=2.選B. 查看更多

 

題目列表(包括答案和解析)

已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

已知函數(shù)f(x)=
(1)點(3,14)在f(x)的圖象上嗎?
(2)當x=4時,求f(x)的值;
(3)當f(x)=2時,求x的值.

查看答案和解析>>

和是Sn=3n-2n2(n∈N*),則當n>2時,下列不等式中的是( 。

查看答案和解析>>

1、一個關于自然數(shù)n的命題,如果驗證當n=1時命題成立,并在假設當n=k(k≥1且k∈N*)時命題成立的基礎上,證明了當n=k+2時命題成立,那么綜合上述,對于( 。

查看答案和解析>>

選修4-5;不等式選講.
當n>2時,求證:logn(n-1)logn(n+1)<1.

查看答案和解析>>


同步練習冊答案