設(shè). 查看更多

 

題目列表(包括答案和解析)

7、設(shè)α,β是兩個(gè)不同的平面,l是一條直線,以下命題正確的是( 。

查看答案和解析>>

12、設(shè)α,β為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:①若m?α,n?α,l⊥m,l⊥n,則l⊥α;②若l∥m,m⊥α,n⊥α,則l∥n;③若α∥β,l?α,則l∥β;④若l∥α,l⊥β,則α⊥β.其中正確命題的序號(hào)是
②③④

查看答案和解析>>

5、設(shè)α,β是兩個(gè)平面,l、m是兩條直線,下列命題中,可以判斷α∥β的是( 。

查看答案和解析>>

設(shè)α,β均為鈍角,sinα=
5
5
,cosβ=-
3
10
10
,則α+β
=(  )
A、
7
4
π
B、
5
4
π
C、
3
4
π
D、
5
4
π
7
4
π

查看答案和解析>>

設(shè)α,β∈(-
π
2
,
π
2
)
,那么“α<β”是“tanα<tanβ”的( 。
A、充分頁不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

三、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2     14. 31    15.     16.  2.

三、解答題

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為紅球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為紅球”為事件.由于事件相互獨(dú)立,且

,

故取出的4個(gè)球均為紅球的概率是

(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)紅球?yàn)楹谇颉睘槭录?sub>,“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件.由于事件互斥,且

,

故取出的4個(gè)紅球中恰有4個(gè)紅球的概率為

19.(Ⅰ)取DC的中點(diǎn)E.

∵ABCD是邊長(zhǎng)為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增區(qū)間為,。

(2)要使當(dāng)時(shí)恒成立,只要當(dāng)時(shí)

由(1)知

當(dāng)時(shí),是增函數(shù),;

當(dāng)時(shí),是減函數(shù),;

當(dāng)時(shí),是增函數(shù),

,因此

21. 證明:由是關(guān)于x的方程的兩根得

。

,

是等差數(shù)列。

(2)由(1)知

。

。

符合上式,

(3)

  ②

①―②得

。

22. (1)∵

 

,∴

,

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極小值點(diǎn),極小值為;

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極大值點(diǎn),極大值為

,易知,

是函數(shù)的極大值點(diǎn),極大值為;

是函數(shù)的極小值點(diǎn),極小值為

(2)若在上至少存在一點(diǎn)使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,且極小值為

∴此時(shí)上至少存在一解; 

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,在上遞減,

∴要滿足條件應(yīng)有函數(shù)的極大值,即

綜上,實(shí)數(shù)的取值范圍為。

 

 


同步練習(xí)冊(cè)答案