② 過(guò)點(diǎn)作直線(xiàn)與有心圓錐曲線(xiàn)交于兩點(diǎn).是否存在這樣的直線(xiàn)使為的中點(diǎn)?若存在.求直線(xiàn)的方程,若不存在.說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
②以定點(diǎn)A為焦點(diǎn),定直線(xiàn)l為準(zhǔn)線(xiàn)的橢圓(A不在l上)有無(wú)數(shù)多個(gè);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④過(guò)原點(diǎn)O任做一直線(xiàn),若與拋物線(xiàn)y2=3x,y2=7x分別交于A、B兩點(diǎn),則
OA
OB
為定值.
其中真命題的序號(hào)為
 
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:

①雙曲線(xiàn)與橢圓有相同的焦點(diǎn);

②在平面內(nèi), 設(shè)、為兩個(gè)定點(diǎn),為動(dòng)點(diǎn),且,其中常數(shù)為正實(shí)數(shù),則動(dòng)點(diǎn)的軌跡為橢圓;

③方程的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;

④過(guò)雙曲線(xiàn)的右焦點(diǎn)作直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),若,則這樣的直線(xiàn)有且僅有3條。

其中真命題的序號(hào)為         (寫(xiě)出所有真命題的序號(hào)).

 

查看答案和解析>>

以下五個(gè)關(guān)于圓錐曲線(xiàn)的命題中:

①雙曲線(xiàn)與橢圓有相同的焦點(diǎn);

②方程的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;

③設(shè)A、B為兩個(gè)定點(diǎn),為常數(shù),若,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);

④過(guò)拋物線(xiàn)的焦點(diǎn)作直線(xiàn)與拋物線(xiàn)相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和

等于5的直線(xiàn)有且只有兩條。

⑤過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若,則動(dòng)點(diǎn)P的

軌跡為橢圓

其中真命題的序號(hào)為                 (寫(xiě)出所有真命題的序號(hào))

 

查看答案和解析>>

以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①雙曲線(xiàn)與橢圓有相同的焦點(diǎn);
②在平面內(nèi), 設(shè)、為兩個(gè)定點(diǎn),為動(dòng)點(diǎn),且,其中常數(shù)為正實(shí)數(shù),則動(dòng)點(diǎn)的軌跡為橢圓;
③方程的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④過(guò)雙曲線(xiàn)的右焦點(diǎn)作直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),若,則這樣的直線(xiàn)有且僅有3條。
其中真命題的序號(hào)為         (寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
②以定點(diǎn)A為焦點(diǎn),定直線(xiàn)l為準(zhǔn)線(xiàn)的橢圓(A不在l上)有無(wú)數(shù)多個(gè);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④過(guò)原點(diǎn)O任做一直線(xiàn),若與拋物線(xiàn)y2=3x,y2=7x分別交于A、B兩點(diǎn),則
OA
OB
為定值.
其中真命題的序號(hào)為 ______(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數(shù)的零點(diǎn)為.         ……………………………………6分

(Ⅱ)由,

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(jí)(1)班應(yīng)抽取學(xué)生10名; ………………………2分

(Ⅱ)通過(guò)計(jì)算可得九(1)班抽取學(xué)生的平均成績(jī)?yōu)?6.5,九(2)班抽取學(xué)生的平均成績(jī)?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績(jī)?yōu)?6.5, 九(2)班學(xué)生的平均成績(jī)?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數(shù)為15,滿(mǎn)足條件的事件數(shù)為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡(jiǎn)得  

當(dāng)軸平行時(shí),的坐標(biāo)也滿(mǎn)足方程.

故所求的中點(diǎn)的軌跡的方程為;

    …………………………………………8分

②      假設(shè)過(guò)點(diǎn)P作直線(xiàn)與有心圓錐曲線(xiàn)交于兩點(diǎn),且P為的中點(diǎn),則

         

由于 

直線(xiàn),即,代入曲線(xiàn)的方程得

             

            

故這樣的直線(xiàn)不存在.                      ……………………………………12分

21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

由題意易知,   得    ;

                             當(dāng)時(shí),當(dāng)時(shí),

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當(dāng)時(shí),遞減,無(wú)極值.

②     當(dāng)時(shí),由

當(dāng)時(shí),當(dāng)時(shí),

時(shí),函數(shù)的極大值為

;

函數(shù)無(wú)極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設(shè)

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 


同步練習(xí)冊(cè)答案