闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
20 數(shù)列的人一相鄰兩項(xiàng)的坐標(biāo)的點(diǎn)均在一次函數闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴椤㈡洟鏁愰崱娆樻К缂備胶鍋撻崕鎶解€﹂悜钘夎摕闁哄洨鍠撶粻楣冩煟閹伴潧澧柣婵囨⒒缁辨帡鎮欓鈧崝銈夋煟韫囨梻绠為柛鈺冨仱楠炲鏁傞挊澶夋睏闁诲氦顫夊ú鏍归崒鐐叉辈闁跨喓濮甸埛鎴︽煙閼测晛浠滈柍褜鍓氬ú鐔煎箖瑜戠粻娑樷槈濡偐鏋€闂備礁缍婂Λ鍧楁倿閿曞倸纾婚悗锝庡枟閻撴洘銇勯幇鍓佹偧缂佺姵锕㈤弻锝夋偄閺夋垵顫囧┑顔硷龚濞咃絿妲愰幒鎳崇喖鎼归崷顓熷櫙闂傚倷娴囬褏鎹㈤幋婵堟殕闁告稑锕g换鍡涙煟閵忊懚鍦矆鐎n偁浜滈柡宥冨妽閻ㄦ垶銇勯弬鍖¤含婵﹨娅i幉鎾礋椤掆偓閸撳綊姊洪幖鐐插濞存粏娉涢锝夘敃閿濆啫浜濋梺鍛婂姀閺呮繈宕㈡禒瀣厵闁稿繗鍋愰弳姗€鏌涢妸銉吋鐎规洦鍨跺濠氬Ψ閿旀儳骞嶉梻浣告啞閸垶宕愰弽顐熷亾濮樼偓瀚�查看更多

 

題目列表(包括答案和解析)

(本小題滿分為12分)

數(shù)列 的前n項(xiàng)和為Sn ,且滿足。

(Ⅰ)計(jì)算

(Ⅱ)猜想通項(xiàng)公式,并用數(shù)學(xué)歸納法證明。

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

(本小題滿分為12分)如圖某河段的兩岸可視為平行,為了測(cè)量該河段的寬度,在河段的一岸邊選取兩點(diǎn),觀察對(duì)岸的點(diǎn),測(cè)得,,且米.

(1)求

(2)求該河段的寬度.

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

(本小題滿分為12分)

已知函數(shù).

(Ⅰ)求的最小正周期;(Ⅱ)求在區(qū)間上的最大值和最小值.

 

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

(本小題滿分為12分)已知函數(shù).

(Ⅰ)求的最小正周期;

(Ⅱ)求在區(qū)間上的最大值和最小值.

 

查看答案和解析>>

解答題(本大題共6小題,共75分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。)

16.(本小題滿分為12分)

已知函數(shù)

(Ⅰ)設(shè)的極大值點(diǎn),的極小值點(diǎn),求的最小值;

(Ⅱ)若,且,求的值.

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

2009年曲靖一種高考沖刺卷理科數(shù)學(xué)(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依題意得,所以,因此選B

2依題意得。又在第二象限,所以

,故選C

3

,

因此選A

4 由

因?yàn)?sub>為純虛數(shù)的充要條件為

故選A

5如圖,

故選A

6.設(shè)

故選D

7.設(shè)等差數(shù)列的首項(xiàng)為,公差,因?yàn)?sub>成等比數(shù)列,所以,即,解得,故選D

8.由,所以之比為2,設(shè),,又點(diǎn)在圓上,所以,即+-4,化簡(jiǎn)得=16,故選C

9.長(zhǎng)方體的中心即為球心,設(shè)球半徑為,則

于是兩點(diǎn)的球面距離為故選B

10.先分別在同一坐標(biāo)系上畫(huà)出函數(shù)的圖象(如圖1)

www.ks5u.com   高考資源網(wǎng)

觀察圖2,顯然,選B

11.依題意,

故選C

12.由題意知,

    ①

代入式①得

由方程的兩根為

故選A。

二、

13.5   14.7    15.22    16.①

13.5.線性規(guī)劃問(wèn)題先作出可行域,注意本題已是最優(yōu)的特定參數(shù)的特點(diǎn),可考慮特殊的交點(diǎn),再驗(yàn)證,由題設(shè)可知

應(yīng)用運(yùn)動(dòng)變化的觀點(diǎn)驗(yàn)證滿足為所求。

14.7. 由題意得

因此A是鈍角,

15.22,連接,的周章為

16.①當(dāng)時(shí),,取到最小值,因次,是對(duì)稱軸:②當(dāng)時(shí),因此不是對(duì)稱中心;③由,令可得上不是增函數(shù);把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號(hào)是①。

 17.(1)上單調(diào)遞增,上恒成立,即上恒成立,即實(shí)數(shù)的取值范圍

(2)由題設(shè)條件知上單調(diào)遞增。

,即

的解集為

的解集為

18.(1)過(guò)連接

側(cè)面

。

是邊長(zhǎng)為2的等邊三角形。又點(diǎn),在底面上的射影,

(法一)(2)就是二面角的平面角,都是邊長(zhǎng)為2的正三角形,即二面角的大小為45°

(3)取的中點(diǎn)為連接的中點(diǎn),,又,且在平面上,又的中點(diǎn),線段的長(zhǎng)就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是

(法二)(2)軸、軸、軸建立空間直角坐標(biāo)系,則點(diǎn)設(shè)平面的法向量為,則,解得,,平面的法向量

向量所成角為45°故二面角的大小為45°,

(3)由,的中點(diǎn)設(shè)平面的法向量為,則,解得到平面的距離為

19.(1)取值為0,1,2,3,4

的分布列為

0

1

2

3

4

P

(2)由

所以,當(dāng)時(shí),由

當(dāng)時(shí),由

即為所求‘

20.(1)在一次函數(shù)的圖像上,

于是,且

數(shù)列是以為首項(xiàng),公比為2的等比數(shù)列

(3)      由(1)知

 

21.(1)由題意得:

點(diǎn)Q在以M、N為焦點(diǎn)的橢圓上,即

點(diǎn)Q的軌跡方程為

(2)

設(shè)點(diǎn)O到直線AB的距離為,則

當(dāng)時(shí),等號(hào)成立

當(dāng)時(shí),面積的最大值為3

22.(1)

(2)由題意知

(3)等價(jià)證明

由(1)知

  

 

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�