題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對(duì)任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對(duì)于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對(duì)于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
若下列方程:,,,至少有一個(gè)方程有實(shí)根,試求實(shí)數(shù)的取值范圍.
解:設(shè)三個(gè)方程均無(wú)實(shí)根,則有
解得,即.
所以當(dāng)或時(shí),三個(gè)方程至少有一個(gè)方程有實(shí)根.
已知函數(shù)=.
(Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡(jiǎn)單題.
【解析】(Ⅰ)當(dāng)時(shí),=,
當(dāng)≤2時(shí),由≥3得,解得≤1;
當(dāng)2<<3時(shí),≥3,無(wú)解;
當(dāng)≥3時(shí),由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當(dāng)∈[1,2]時(shí),==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
x | 3 |
x | 2 |
1 |
32 |
π |
2 |
π |
3 |
π |
2 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com