將n2個正數(shù)1.2.3.--.n2填入n×n方格中. 816357492 這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和.如右圖就是一個3階幻方.可知f= A.32 B.33 C.34 D.35 2005學年第一學期期末高三八校聯(lián)考 查看更多

 

題目列表(包括答案和解析)

將n2個正整數(shù)1,2,3,…,n2(n≥3)填入n×n的方格內(nèi),若每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫n階幻方,設(shè)f(n)為n階幻方對角線上的數(shù)的和,如下表就是一個3階幻方,且f(3)=15,則f(n)等于

8

1

6

3

5

7

4

9

2

A.            B.           C.           D.

查看答案和解析>>

(文)將n2個正整數(shù)1,2,3,…n2填入n×n個方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方,如圖就是一個3 階幻方,定義f(n)為n階幻方對角線上數(shù)的和,例如f(3)=15,則f(4)=
 

8 1 6
3 5 7
4 9 2

查看答案和解析>>

將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使其每行、每列、每條對角線上的數(shù)的和相等,這個正方形叫做n階幻方.記f(n)為n階幻方對角線的和,如右圖就是一個3階幻方,可知f(3)=15,,則f(5)=( 。
8 3 4
1 5 9
6 7 2

查看答案和解析>>

將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=( 。
8 1 6
3 5 7
4 9 2
A.32B.33C.34D.35

查看答案和解析>>

(文)將n2個正整數(shù)1,2,3,…n2填入n×n個方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方,如圖就是一個3 階幻方,定義f(n)為n階幻方對角線上數(shù)的和,例如f(3)=15,則f(4)=   
816
357
492

查看答案和解析>>


同步練習冊答案