12. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分15分)

已知函數(shù),其中, (),若相鄰兩對稱軸間的距離不小于

   (Ⅰ)求的取值范圍;

   (Ⅱ)在中,分別是角的對邊,,當最大時,,求的面積.

查看答案和解析>>

(本小題滿分15分)

某旅游商品生產(chǎn)企業(yè),2009年某商品生產(chǎn)的投入成本為1元/件,

出廠價為流程圖的輸出結果元/件,年銷售量為10000件,

因2010年國家長假的調整,此企業(yè)為適應市場需求,

計劃提高產(chǎn)品檔次,適度增加投入成本.若每件投入成本增加的

比例為),則出廠價相應提高的比例為

同時預計銷售量增加的比例為

已知得利潤(出廠價投入成本)年銷售量.

(Ⅰ)寫出2010年預計的年利潤

與投入成本增加的比例的關系式;

(Ⅱ)為使2010年的年利潤比2009年有所增加,

問:投入成本增加的比例應在什么范圍內(nèi)?

查看答案和解析>>

(本小題滿分15分)某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點處,已知AB=AC=6km,現(xiàn)計劃在BC邊的高AO上一點P處建造一個變電站. 記P到三個村莊的距離之和為y.

(1)設,把y表示成的函數(shù)關系式;

(2)變電站建于何處時,它到三個小區(qū)的距離之和最。

查看答案和解析>>

(本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于AB兩點,曲線C是以AB為長軸,離心率為的橢圓,其右焦點為F.若點P(-1,1)為圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的右準線l于點Q.(1)求橢圓C的標準方程;

(2)證明:直線PQ與圓O相切.

查看答案和解析>>

(本小題滿分15分)已知等差數(shù)列{an}中,首項a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足,其前n項和為Sn.(1)求數(shù)列{an}的通項公式an;(2)若S2S1,Sm(m∈N*)的等比中項,求正整數(shù)m的值.

查看答案和解析>>

一. 選擇題(本大題共6小題,每小題7分,共42分)

題號

1

2

3

4

5

6

答案

C

B

C

C

A

A

二. 填空題(本大題共3小題,每小題5分,共15分)

7. 0          8. 36           9.    

三.解答題:解答應寫出文字說明,證明過程或演算步驟(本大題共3小題,共43分)

10.(本小題滿分14分)

解:(I)設等差數(shù)列的公差為,則

                                 …………2分

        解得                                    …………4分

              .                                                             …………5分

                                                    …………7分

   (II)由

             

                                                                  …………10分

                                                        …………12分

             

                                                                       …………14分

11.(本小題滿分14分)

解法1:(Ⅰ) 取CD的中點E,連結PE、EM、EA.

∵△PCD為正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

∵四邊形ABCD是矩形

∴△ADE、△ECM、△ABM均為直角三角形

 

由勾股定理可求得:EM=,AM=,AE=3

                           (4分)

,又在平面ABCD上射影:

∴∠AME=90°,       ∴AM⊥PM                   (6分)

(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

∴∠PME是二面角P-AM-D的平面角            (8分)

∴tan ∠PME=

∴∠PME=45°

∴二面角P-AM-D為45°;                    (10分)

(Ⅲ)設D點到平面PAM的距離為,連結DM,則

 ,    ∴

                          (12分)

中,由勾股定理可求得PM=

,所以:

即點D到平面PAM的距離為                        (14分)

解法2:(Ⅰ) 以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標系,

依題意,可得

     ……2分

      (4分)

 

,∴AM⊥PM              (6分)

 (Ⅱ)設,且平面PAM,則

   即

,   

 

,得                     (8分)

,顯然平面ABCD,    ∴

結合圖形可知,二面角P-AM-D為45°;     (10分)

(Ⅲ) 設點D到平面PAM的距離為,由(Ⅱ)可知與平面PAM垂直,則

=

即點D到平面PAM的距離為               (14分)

12.(本小題滿分15分)

解:(Ⅰ)∵軸,∴,由橢圓的定義得:    (2分)

,∴,                  (4分)

    ∴     

,                                     (6分)

∴所求橢圓C的方程為.                             (7分)

(Ⅱ)由(Ⅰ)知點A(-2,0),點B為(0,-1),設點P的坐標為

,

-4得-,

∴點P的軌跡方程為.               (9分)

設點B關于P的軌跡的對稱點為,則由軸對稱的性質可得:

,解得:,      (12分)

∵點在橢圓上,∴ ,

整理得解得

∴點P的軌跡方程為,                   (14分)

經(jīng)檢驗都符合題設,

∴滿足條件的點P的軌跡方程為.                 (15分)

 

 

   

 

 

 

 


同步練習冊答案