(Ⅰ)若a=1.函數(shù)的圖象能否總在直線的下方?說明理由, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

 已知函數(shù)R).

(Ⅰ)若a=1,函數(shù)的圖象能否總在直線的下方?說明理由;

 

(Ⅱ)若函數(shù)在(0,2)上是增函數(shù),求a的取值范圍;

 

(Ⅲ)設為方程的三個根,且,,,  求證:

 

查看答案和解析>>

已知函數(shù)數(shù)學公式的圖象在點P(0,f(0))處的切線方程為y=3x-2.
(1)求實數(shù)a,b的值;
(2)設數(shù)學公式是[2,+∞)上的增函數(shù).
①求實數(shù)m的最大值;
②當m取最大值時,是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax﹣lnx+1(a∈R),g(x)=x e1-x。
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,若存在,求出a的取值范圍;若不存在,請說明理由。
(3)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中總能使得F(x1)﹣F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質“L”,試判斷函數(shù)f(x)是不是具備性質“L”,并說明理由。

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中x0=
x1+x2
2
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質“L”,試判斷函數(shù)f(x)是不是具備性質“L”,并說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數(shù)y=F(x)圖象上的點M(x,y)(其中總能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,則稱函數(shù)具備性質“L”,試判斷函數(shù)f(x)是不是具備性質“L”,并說明理由.

查看答案和解析>>

                   高三數(shù)學試卷(文科)                 2009.4   

題號

1

2

3

4

5

6

7

8

答案

C

B

A

B

A

D

C

A

一、選擇題:本大題共 8 小題,每小題 5 分,共 40 分.

 

 

 

二、填空題:本大題共 6 小題,每小題 5 分,共 30 分.

9. 36         10. 10        11. 2, 8      12.      13.        14. 5, 2     

注:兩空的題目,第一個空3分,第二個空2分.

三、解答題:本大題共 6 小題,共 80 分.

15.(本小題滿分12分)

(Ⅰ)解:由余弦定理,                       ----------------------------3分

.                                 ---------------------------5分

(Ⅱ)解:由(Ⅰ)知 ,

所以角為銳角,所以,          ----------------------------7分

     --------------------------10分

                          

   .

        所以.                             ---------------------------12分

16.(本小題滿分12分)

(Ⅰ)解:記 “2次匯報活動都是由小組成員甲發(fā)言” 為事件A.   -----------------------------1分     

由題意,得事件A的概率,              

即2次匯報活動都是由小組成員甲發(fā)言的概率為.            ---------------------------5分

(Ⅱ)解:由題意,每次匯報時,男生被選為代表的概率為,女生被選為代表的概率為.

                                                               ----------------------------6分

      記“男生發(fā)言次數(shù)不少于女生發(fā)言次數(shù)”為事件B,

由題意,事件B包括以下兩個互斥事件:

1事件B1:男生發(fā)言2次女生發(fā)言0次,其概率為

,             ----------------------------8分

2事件B2:男生發(fā)言1次女生發(fā)言1次,其概率為

,           ----------------------------10分

所以,男生發(fā)言次數(shù)不少于女生發(fā)言次數(shù)的概率為.

   ---------------------------12分

17.(本小題滿分14分)

方法一:(Ⅰ)證明:在中,,

       ,

       ,即,                             ---------------------------1分

       ,

       平面.                                      ---------------------------4分

(Ⅱ)如圖,連接AC,由(Ⅰ)知平面,

     AC為PA在平面ABCD內的射影,

     為PA與平面ABCD所成的角.    --------------6分

     在中,,,

     ,

    在中,,,

   

    PA與平面ABCD所成角的大小為.                ---------------------------8分

(Ⅲ)由(Ⅰ)知,

,

平面.                                       ---------------------------9分

如圖,過C作于M,連接BM,

是BM在平面PCD內的射影,

為二面角B-PD-C的平面角.                       ---------------------------11分

中, , PC=1, ,

,

,

中, , BC=1, ,

,

二面角B-PD-C的大小為.                       --------------------------14分

  方法二:(Ⅰ)同方法一.                                        ---------------------------4分

   (Ⅱ)解:連接AC,由(Ⅰ)知平面,

     AC為PA在平面ABCD內的射影,

       為PA與平面ABCD所成的角.                     ---------------------------6分

       如圖,在平面ABCD內,以C為原點, CD、CB、CP分別為x、y、z軸,建立空間直角坐標系C-xyz,

         則, ,                    

                                                                 ---------------------------7分

       ,

       PA與平面ABCD所成角的大小為.               ---------------------------9分

 (Ⅲ)過C作于M,連接BM,設,

       則

,

;           1       

共線,

,               2

由12,解得,

點的坐標為,

,

,

,

為二面角B-PD-C的平面角.                       ---------------------------12分

        

         , 

 二面角B-PD-C的大小為.                        --------------------------14分

18.(本小題滿分14分)

(Ⅰ)解:因為,

      所以當時,,解得,           ---------------------------2分

          當時,,即,解得,

      所以,解得;                                 ---------------------------5分

,數(shù)列的公差

所以.                            ---------------------------8分

(Ⅱ)因為

                     ---------------------------9分

        ---------------------------12分

.                       

因為,

所以 .                          -------------------------14分

        注:為降低難度,此題故意給出多余條件,有多種解法,請相應評分.

19.(本小題滿分14分)

   (Ⅰ)解:設A(x1, y1),

因為P為AM的中點,且P的縱坐標為0,M的縱坐標為1,

所以,解得,                              -------------------------1分

又因為點A(x1, y1)在橢圓C上,

所以,即,解得,

 則點A的坐標為,                      -------------------------3分

所以直線l的方程為,或.    -------------------------5分

   (Ⅱ)設A(x1, y1),B(x2, y2),則

所以,

         則,                   -------------------------7分

         當直線AB的斜率不存在時,其方程為,,此時;

-------------------------8分

當直線AB的斜率存在時,設其方程為,

   由題設可得A、B的坐標是方程組的解,

   消去y得

   所以,       -------------------------10分

   則

   所以,

   當時,等號成立, 即此時取得最大值1.    -------------------------13分

綜上,當直線AB的方程為時,有最大值1.  -------------------14分

20.(本小題滿分14分)

(Ⅰ)解:當時,,

因為,

所以,函數(shù)的圖象不能總在直線的下方.          ---------------------------3分

(Ⅱ)解:由題意,得,

,解得,                     --------------------------4分

時,由,解得,

所以上是增函數(shù),與題意不符,舍去;

時,由,與題意不符,舍去;     --------------------------6分

時,由,解得,

所以上是增函數(shù),

在(0,2)上是增函數(shù),

              所以,解得,

綜上,a的取值范圍為.                            ---------------------------9分

(Ⅲ)解:因為方程最多只有3個根,

      由題意,得在區(qū)間內僅有一根,

      所以,           1

同理,           2       --------------------------11分

時,由1得 ,即

    由2得,即,

    因為,所以,即;

時,由1得 ,即

    由2得,即,

    因為,所以,即;

時,因為,所以有一根0,這與題意不符.

綜上,.                                          ---------------------------14分

注:在第(Ⅲ)問中,得到12后,可以在坐標平面aOb內,用線性規(guī)劃方法解. 請相應評分.

       

     

 

 


同步練習冊答案