題目列表(包括答案和解析)
如圖,四棱錐的底面是矩形,底面,P為BC邊的中點(diǎn),SB與平面ABCD所成的角為45°,且AD=2,SA=1.
(1)求證:平面SAP;
(2)求二面角A-SD-P的大小.
如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=,點(diǎn)E是棱PB的中點(diǎn).
(Ⅰ) 求直線AD與平面PBC的距離;
(Ⅱ) 若AD=,求二面角A-EC-D的平面角的余弦值.
如圖,四棱錐P-ABCD的底面為矩形,且AB=,BC=1,E,F(xiàn)分別為AB,PC中點(diǎn).
(1)求證:EF∥平面PAD;
(2)若平面PAC⊥平面ABCD,求證:平面PAC⊥平面PDE.
|
一、選擇題
CDABA BCBAB
二、填空題
11. 12. -1 13.1<e<2 14. 15.{-1,0}
提示:8.利用點(diǎn)到直線的距離公式知,即在圓內(nèi),也在橢圓內(nèi),所以過(guò)點(diǎn)的直線與橢圓總有兩個(gè)不同的交點(diǎn).
9.可以轉(zhuǎn)化為求展開(kāi)式中所有奇數(shù)項(xiàng)系數(shù)之和,賦值即可.
10.原問(wèn)題有且僅有一個(gè)正實(shí)數(shù)解.令,則,令
,,由得或.又時(shí),;,時(shí),.所以.又
;.結(jié)合三次函數(shù)圖像即可.
15. ,
,即,當(dāng)m為整數(shù)時(shí),值為0,m為小數(shù)時(shí),值為-1,故所求值域?yàn)閧-1,0}
三、解答題
16. (1)…………………3分
由條件………………………………………6分
(2),令,解得,又 所以在上遞減,在上遞增…………………………13分
17.(1)答錯(cuò)題目的個(gè)數(shù)
∴分布列為:,期望(道題)……7分
(2)設(shè)該考生會(huì)x道題,不會(huì)10-x道題,則…10分
解得:或(舍),故該考生最多會(huì)3道題…………………………………13分
18.(1)作,垂足為,連結(jié),由題設(shè)知,底面,
且為中點(diǎn),由知,,
從而,于是,由三垂線定理知,……………4分
(2)由題意,,所以側(cè)面,又側(cè)面,所以側(cè)面側(cè)面.作,垂足為,連接,則平面.
故為與平面所成的角,…………………………………7分
由,得:, 又,
因而,所以為等邊三角形.
作,垂足為,連結(jié).
由(1)知,,又,
故平面,,
是二面角的平面角………………………………………………...10分
.,,,
所以二面角為或……………………….13分
19.(1)由,得,…2分
又, 兩式相減,得:
,
綜上,數(shù)列為首項(xiàng)為1,公比為的等比數(shù)列…………………………..…….6分
(2)由,得,所以是首項(xiàng)為1,,公差為的等差數(shù)列,……………………………….…………………………....9分
……………………….………………………....13分
20.(1)設(shè)點(diǎn),則
所以,當(dāng)x=p時(shí),…………………………………………………….….4分
(2)由條件,設(shè)直線,代入,得:
設(shè),則,
…......................................................................................7分
….10分
又,所以為定值2……………………………………………….12分
21. (1)是奇函數(shù),則恒成立,
,,故…………………….2分
(2)在上單調(diào)遞減,,,
只需 (恒成立.
令,則
,而恒成立,.….…………………….7分
(3)由(1)知,方程為,
令,, ,
當(dāng)時(shí),,在上為增函數(shù);
當(dāng)時(shí),,在上為減函數(shù);
當(dāng)時(shí),.而,
函數(shù)、 在同一坐標(biāo)系的大致圖象如圖所示,
當(dāng)即時(shí),方程無(wú)解;
當(dāng),即時(shí),方程有一個(gè)根;
當(dāng),即時(shí),方程有兩個(gè)根.………………………………….12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com