如圖.坐標(biāo)紙上的每個單元格的邊長為1.由下往上的六個點:1.2.3.4.5.6的橫縱坐標(biāo)分別對應(yīng)數(shù)列的前12項.如下表所示: 查看更多

 

題目列表(包括答案和解析)

18、如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項,如下表所示:
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
按如此規(guī)律下去,則a2009+a2010+a2011=
1005

查看答案和解析>>

12、如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( 。

查看答案和解析>>

14、如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫縱坐標(biāo)分別對應(yīng)數(shù)列{an} (n∈N*)的前12項,如下表所示:
按如此規(guī)律下去,則a2010 等于
1005

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:編號為1,2,3,4,5,6的橫縱坐標(biāo)分別對應(yīng)數(shù)列{an)(n∈N*)的前12項,如下表所示,
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
x1 y1 x2 y2 x3 y3 x4 y4 x5 y6 x6 y6
按如此規(guī)律下去,則a2010+a2011+a2012=( 。

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,
由下往上的六個點:1,2,3,4,5,6的橫縱坐標(biāo)
分別對應(yīng)數(shù)列n∈Z*)的前12項,
如下表所示:

























按如此規(guī)律下去,則=  ▲   .

查看答案和解析>>

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

當(dāng)時,,

  因為,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函數(shù),且將的圖象先向右平移個單位,再向上平移1個單位,可以得到的圖象,∴是滿足條件的一個平移向量.        12分

18. 解:(1)由等可能事件的概率意義及概率計算公式得;   5分

 (2)設(shè)選取的5只福娃恰好距離組成完整“奧運會吉祥物”差兩種福娃記為事件B,

依題意可知,至少差兩種福娃,只能是差兩種福娃,則

6ec8aac122bd4f6e        11分

故選取的5只福娃距離組成完整“奧運會吉祥物”至少差兩種福娃的概率為  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴點到平面的距離即求點到平面的距離

   取中點,連結(jié)

為等邊三角形

                                                               

又由(1)知

  ∴點到平面的距離即點到平面的距離為………………8分

   (3)二面角即二面角

   過,垂足為點,連結(jié)

由(2)及三垂線定理知

為二面角的平面角

  

   …12分

解法2:(1)如圖,取中點,連結(jié)

為等邊三角形

又∵平面平面   

建立空間直角坐標(biāo)系,則有

,

………………4分

(2)設(shè)平面的一個法向量為

∴點到平面的距離即求點到平面的距離

………………………………8分

(3)平面的一個法向量為

設(shè)平面的一個法向量為

,

∴二面角的大小為…………………………………12分

 

 

20. 解:(1)由題意知

當(dāng)n=1時,

當(dāng)

兩式相減得

整理得:)       ………………………………………………(4分)

∴數(shù)列{an}是為首項,2為公比的等比數(shù)列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

設(shè),則,  

   

同理,有,∴為方程的兩根

. 設(shè),則     ①

  ②

由①、②消去得點的軌跡方程為.   ………………………………6分

(2)

∴當(dāng)時,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為…………5分

(2)由題

……………………6分

……………………………………………7分

當(dāng)

 

 

 

 

 

 

 

 

 

此時,,,有一個交點;…………………………9分

當(dāng)時,

   

  

 

 

  

,

∴當(dāng)時,有一個交點;

當(dāng)時,有兩個交點;

      當(dāng)時,,有一個交點.………………………13分

綜上可知,當(dāng)時,有一個交點;

          當(dāng)時,有兩個交點.…………………………………14分

 

 

 


同步練習(xí)冊答案