(Ⅱ)由和得--------8分 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說明理由.

查看答案和解析>>

(理)(本小題滿分12分)

    口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨(dú)立,并由甲進(jìn)行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

由于當(dāng)前學(xué)生課業(yè)負(fù)擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機(jī)抽取16名學(xué)生,經(jīng)校醫(yī)檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,

小數(shù)點(diǎn)后的一位數(shù)字為葉)如圖示:

 

 

3  5  6  6  6  7  7  7  8  8  9  9

5

0  1  1  2

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)若視力測試結(jié)果不低于5.0,則稱為“健康視力”,求校醫(yī)從這16人中隨機(jī)選取3人,至多有1人是“健康視力”的概率;

(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“健康視力”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望

 

查看答案和解析>>

由于當(dāng)前學(xué)生課業(yè)負(fù)擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機(jī)抽取16名學(xué)生,經(jīng)校醫(yī)檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如圖示:

 

 

3  5  6  6  6  7  7  7  8  8  9  9

5

0  1  1  2

 

 

 

指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

若視力測試結(jié)果不低于5.0,則稱為“健康視力”,求校醫(yī)從這16人中隨機(jī)選取3人,至多有1人是“健康視力”的概率;以這16人的樣本數(shù)據(jù)來估計(jì)整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“健康視力”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望

 

查看答案和解析>>

(本小題滿分12分)

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別

PM2.5(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,15]

4

0.1

第二組

(15,30]

12

0.3

第三組

(30,45]

8

0.2

第四組

(45,60]

8

0.2

第三組

(60,75]

4

0.1

第四組

(75,90)

4

0.1

(1)寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計(jì)算過程);

(2)求該樣本的平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由;

(3)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列及數(shù)學(xué)期望

 

查看答案和解析>>


同步練習(xí)冊答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹