題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題:
l 題號
l
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
l
1、解析:,N=,
即.答案:.
2、解析:由題意得,
又.
答案:.
3、解析:程序的運行結(jié)果是.答案:.
4、解析:與直線垂直的切線的斜率必為4,而,所以,切點為.切線為,即,答案:.
5、解析:由一元二次方程有實根的條件,而,由幾何概率得有實根的概率為.答案:.
6、解析:如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以正確;
如果一個平面經(jīng)過了另一個平面的一條垂線,則這兩個平面平行,所以也正確;
只有選項錯誤.答案:.
7、解析:由題意,得,答案:.
8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉淼?sub>倍.答案:.
二、填空題:
l 題號
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
9、解析:若,則,解得.
10、解析:由題意.
11、解析:
12、解析:令,則,令,則,
令,則,令,則,
令,則,令,則,
…,所以.
13、解析::;則圓心坐標(biāo)為.
:由點到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為.
14、解析:由柯西不等式,答案:.
15、解析:顯然與為相似三角形,又,所以的面積等于9cm.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16、解: (1), ……………………… 2分
∴,………………………………………………… 4分
解得.………………………………………………………………… 6分
(2)由,得:, ……………………… 8分
∴ ………………………………… 10分
∴.…………………………………………………………… 12分
17、解:(1)… 2分
則的最小正周期, …………………………………4分
且當(dāng)時單調(diào)遞增.
即為的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).……6分
(2)當(dāng)時,當(dāng),即時.
所以. …………………………9分
為的對稱軸. …………………12分
18、解:
(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴. ……………………………………………………7分
解法二:“有放回摸取”可看作獨立重復(fù)實驗, …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為. …………………7分
(2)設(shè)摸得白球的個數(shù)為,依題意得:
,,.
… 10分
∴,……………………………………12分
.……………………14分
19、(1)證明: 連結(jié),與交于點,連結(jié).………………………1分
是菱形, ∴是的中點. ………………………………………2分
點為的中點, ∴. …………………………………3分
平面平面, ∴平面. ……………… 6分
(2)解法一:
平面,平面,∴ .
,∴. …………………………… 7分
是菱形, ∴.
,
∴平面. …………………………………………………………8分
作,垂足為,連接,則,
所以為二面角的平面角. ………………………………… 10分
,∴,.
在Rt△中,=,…………………………… 12分
∴.…………………………… 13分
∴二面角的正切值是. ………………………… 14分
解法二:如圖,以點為坐標(biāo)原點,線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,……………2分
則,,.
∴. ……………4分
設(shè)平面的一個法向量為,
由,得,
令,則,∴. …………………7分
平面,平面,
∴. ………………………………… 8分
,∴.
是菱形,∴.
,∴平面.…………………………… 9分
∴是平面的一個法向量,.………………… 10分
∴,
∴, …………………… 12分
∴.…………………………………… 13分
∴二面角的正切值是. ……………………… 14分
20、解:圓的方程為,則其直徑長,圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),
有, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此. ………………………………… 8分
據(jù)等差,, …………… 10分
所以,即,,…………… 12分
即:方程為或. …………………14分
21、解:
(1)因為, …………………………2分
所以,滿足條件. …………………3分
又因為當(dāng)時,,所以方程有實數(shù)根.
所以函數(shù)是集合M中的元素. …………………………4分
(2)假設(shè)方程存在兩個實數(shù)根
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com