設(shè)M是由滿足下列兩個(gè)條件的函數(shù)構(gòu)成的集合: 查看更多

 

題目列表(包括答案和解析)

設(shè)M是由滿足下列兩個(gè)條件的函數(shù)構(gòu)成的集合:

       ①議程有實(shí)根;②函數(shù)的導(dǎo)數(shù)滿足0<<1.

   (I)若,判斷方程的根的個(gè)數(shù);

   (II)判斷(I)中的函數(shù)是否為集合M的元素;

   (III)對(duì)于M中的任意函數(shù),設(shè)x1是方程的實(shí)根,求證:對(duì)于定義域中任意的x2x3,當(dāng)| x2x1|<1,且| x3x1|<1時(shí),有

查看答案和解析>>

設(shè)M是由滿足下列兩個(gè)條件的函數(shù)構(gòu)成的集合:
①議程有實(shí)根;②函數(shù)的導(dǎo)數(shù)滿足0<<1.
(I)若,判斷方程的根的個(gè)數(shù);
(II)判斷(I)中的函數(shù)是否為集合M的元素;
(III)對(duì)于M中的任意函數(shù),設(shè)x1是方程的實(shí)根,求證:對(duì)于定義域中任意的x2x3,當(dāng)| x2x1|<1,且| x3x1|<1時(shí),有

查看答案和解析>>

設(shè)M是由滿足下列兩個(gè)條件的函數(shù)f(x)構(gòu)成的集合:
(1)方程f(x)-1=0有實(shí)數(shù)解;
(2)函數(shù)f(x)的導(dǎo)數(shù)f'(x)滿足0<f'(x)<2,給出如下函數(shù):
①f(x)=x+sinx;
數(shù)學(xué)公式;
③f(x)=x+log3x,x∈[1,+∞);
④f(x)=x+2x
其中是集合M中的元素的有________.(只需填寫函數(shù)的序號(hào))

查看答案和解析>>

設(shè)M是由滿足下列兩個(gè)條件的函數(shù)f(x)構(gòu)成的集合:
(1)方程f(x)-1=0有實(shí)數(shù)解;
(2)函數(shù)f(x)的導(dǎo)數(shù)f'(x)滿足0<f'(x)<2,給出如下函數(shù):
①f(x)=x+sinx;
;
③f(x)=x+log3x,x∈[1,+∞);
④f(x)=x+2x
其中是集合M中的元素的有    .(只需填寫函數(shù)的序號(hào))

查看答案和解析>>

設(shè)M是由滿足下列兩個(gè)條件的函數(shù)f(x)構(gòu)成的集合:

①議程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)(x)滿足0<(x)<1.

(Ⅰ)若,判斷方程f(x)-x=0的根的個(gè)數(shù);

(Ⅱ)判斷(Ⅰ)中的函數(shù)f(x)是否為集合M的元素;

(Ⅲ)對(duì)于M中的任意函數(shù)f(x),設(shè)x1是方程f(x)-x=0的實(shí)根,求證:對(duì)于f(x)定義域中任意的x2x3,當(dāng)|x2x1|<1,且|x3x1|<1時(shí),有|f(x3)-f(x2)|<2.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

<dl id="6w7ph"></dl>

       P(0,0,a),F,).………………2分

   (I)

       …………………………………………4分

文本框:     (II)設(shè)平面DEF的法向量為

       得

       取x=1,則y=-2,z=1.

       ………………………………………………6分

      

       設(shè)DB與平面DEF所成角為……………………………………8分

   (III)假設(shè)存在點(diǎn)G滿足題意

       因?yàn)?sub>

      

       ∴存在點(diǎn)G,其坐標(biāo)為(,0,0),即G點(diǎn)為AD的中點(diǎn).……………………12分

19.(本小題滿分12分)

       解:(I)ξ的所有可能取值為0,1,2,依題意得:

       …………3分

       ∴ξ的分布列為

      

ξ

0

1

2

P

       ∴Eξ=0×+1×+2×=1.…………………………………………4分

   (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

       ∴所求概率為…………………………………8分

   (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

       ………………………………10分

       ……………12分

20.(本小題滿分12分)

       解:(I)由題意知

       是等差數(shù)列.…………………………………………2分

      

       ………………………………5分

   (II)由題設(shè)知

      

       是等差數(shù)列.…………………………………………………………8分

      

       ………………………………10分

       ∴當(dāng)n=1時(shí),;

       當(dāng)

       經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

21.(本小題滿分12分)

       解:(I)令

       則

       是單調(diào)遞減函數(shù).……………………………………2分

       又取

       在其定義域上有唯一實(shí)根.……………………………4分

   (II)由(I)知方程有實(shí)根(或者由,易知x=0就是方程的一個(gè)根),滿足條件①.………………………………………………5分

      

       滿足條件②.故是集合M中的元素.……………………………7分

   (III)不妨設(shè)在其定義域上是增函數(shù).

       ………………………………………………………………8分

       是其定義域上的減函數(shù).

       .………………10分

      

       …………………………………………12分

22.(本小題滿分14分)

       解:(I)設(shè)

       由

       ………………………………………………2分

       又

      

       同理,由………………………………4分

       …………6分

   (II)方法一:當(dāng)m=0時(shí),A(2,2),B(2,-),Dn,2),En,-2).

       ∵ABED為矩形,∴直線AEBD的交點(diǎn)N的坐標(biāo)為(………………8分

       當(dāng)

      

       同理,對(duì)、進(jìn)行類似計(jì)算也得(*)式.………………………………12分

       即n=-2時(shí),N為定點(diǎn)(0,0).

       反之,當(dāng)N為定點(diǎn),則由(*)式等于0,得n=-2.…………………………14分

       方法二:首先n=-2時(shí),則D(-2,y1),A

         ①

         ②…………………………………………8分

       ①-②得

      

       …………………………………………………………10分

       反之,若N為定點(diǎn)N(0,0),設(shè)此時(shí)

       則

       由D、N、B三點(diǎn)共線,   ③

       同理E、N、A三點(diǎn)共線, ④………………12分

       ③+④得

       即-16m+8m4m=0,m(n+2)=0.

       故對(duì)任意的m都有n=-2.……………………………………………………14分

 

 

 


同步練習(xí)冊(cè)答案