17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又.(6分)

   (2)由,

,.(6分)

18.證明:(1)因為在正方形ABCD中,AC=2

可得:在△PAB中,PA2+AB2=PB2=6。

所以PA⊥AB

同理可證PA⊥AD

故PA⊥平面ABCD (4分)

   (2)取PE中點M,連接FM,BM,

連接BD交AC于O,連接OE

∵F,M分別是PC,PF的中點,

∴FM∥CE,

又FM面AEC,CE面AEC

∴FM∥面AEC

又E是DM的中點

OE∥BM,OE面AEC,BM面AEC

∴BM∥面AEC且BM∩FM=M

∴平面BFM∥平面ACE

又BF平面BFM,∴BF∥平面ACE (4分)

   (3)連接FO,則FO∥PA,因為PA⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

SㄓACD=1,

    ∴VFACD=VF――ACD=  (4分)

19. (1)由已知圓的標準方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

設圓的圓心坐標為(x,y),則(為參數(shù)),

消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

   (2)有方程組得公共弦的方程:

圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

∴弦長l=(定值)               (5分)

20.解:(1)

時,取最小值

.(6分)

   (2)令,

,(不合題意,舍去).

變化時,的變化情況如下表:

遞增

極大值

遞減

內有最大值

內恒成立等價于內恒成立,

即等價于

所以的取值范圍為.(6分)

21.解:(1),

,

,

數(shù)列是首項為,公比為的等比數(shù)列,

時,,

     (6分)

   (2),

時,

時,,…………①

,………………………②

得:

也滿足上式,

.(6分)

22.解:(1)由題意橢圓的離心率

        

∴橢圓方程為……2分

又點在橢圓上

         ∴橢圓的方程為(4分)

(2)設

消去并整理得……6分

∵直線與橢圓有兩個交點

,即……8分

中點的坐標為……10分

的垂直平分線方程:

……12分

將上式代入得

   即 

的取值范圍為…………(8分)

 

 

 


同步練習冊答案