8.下列說法: ①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后.方差恒不變, 查看更多

 

題目列表(包括答案和解析)

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②回歸方程y^=bx+a必過點(diǎn)(
.
x
,
.
y
);
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的是
 

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
.
y
);
④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤有一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x
,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
 ,
.
y
);
④在一個(gè)2×2列聯(lián)中,由計(jì)算得K2=13.079則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系;
其中錯(cuò)誤 的個(gè)數(shù)是(  )
本題可以參考獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k) 0.5 0.40 0.25 0.15 0.10 0.05 0.25 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.535 7.879 10.828
A、0B、1C、2D、3

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量
x
增加一個(gè)單位時(shí),
y
平均增加5個(gè)單位;
③線性回歸方程
y
=bx+a必過(
x
,
y
);
.
x
是x1,x2,…,x100的平均數(shù),
.
a
是x1,x2,…,x40的平均數(shù),
.
b
是x41,x42,…,x100的平均數(shù),則用a,b表示的
x
=
40a+60b
100

  其中錯(cuò)誤的個(gè)數(shù)是
1個(gè)
1個(gè)

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x
,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
,
.
y
);
其中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又,.(6分)

   (2)由,

,.(6分)

18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

      • 可得:在△PAB中,PA2+AB2=PB2=6。

        所以PA⊥AB

        同理可證PA⊥AD

        故PA⊥平面ABCD (4分)

           (2)取PE中點(diǎn)M,連接FM,BM,

        連接BD交AC于O,連接OE

        ∵F,M分別是PC,PF的中點(diǎn),

        ∴FM∥CE,

        又FM面AEC,CE面AEC

        ∴FM∥面AEC

        又E是DM的中點(diǎn)

        OE∥BM,OE面AEC,BM面AEC

        ∴BM∥面AEC且BM∩FM=M

        ∴平面BFM∥平面ACE

        又BF平面BFM,∴BF∥平面ACE (4分)

           (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

        SㄓACD=1,

            ∴VFACD=VF――ACD=  (4分)

        19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

        設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

        消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

           (2)有方程組得公共弦的方程:

        圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

        ∴弦長l=(定值)               (5分)

        20.解:(1),

        當(dāng)時(shí),取最小值

        .(6分)

           (2)令,

        ,(不合題意,舍去).

        當(dāng)變化時(shí)的變化情況如下表:

        遞增

        極大值

        遞減

        內(nèi)有最大值

        內(nèi)恒成立等價(jià)于內(nèi)恒成立,

        即等價(jià)于,

        所以的取值范圍為.(6分)

        21.解:(1)

        ,

        數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

        當(dāng)時(shí),,

             (6分)

           (2),

        當(dāng)時(shí),;

        當(dāng)時(shí),,…………①

        ,………………………②

        得:

        也滿足上式,

        .(6分)

        22.解:(1)由題意橢圓的離心率

                

        ∴橢圓方程為……2分

        又點(diǎn)在橢圓上

                 ∴橢圓的方程為(4分)

        (2)設(shè)

        消去并整理得……6分

        ∵直線與橢圓有兩個(gè)交點(diǎn)

        ,即……8分

        中點(diǎn)的坐標(biāo)為……10分

        設(shè)的垂直平分線方程:

        ……12分

        將上式代入得

           即 

        的取值范圍為…………(8分)

         

         

         


        同步練習(xí)冊答案