已知△ABC的面積S滿足 查看更多

 

題目列表(包括答案和解析)

已知△ABC的面積S滿足
3
≤S≤3
3
,且
AB
BC
=6

(1)求角B的取值范圍;
(2)求函數(shù)f(B)=
1-
2
cos(2B-
π
4
)
sinB
的值域.

查看答案和解析>>

已知△ABC的面積S滿足3≤S≤3
3
,且
AB
BC
=6,
AB
BC
的夾角為α.
(1)求α的取值范圍;
(2)若函數(shù)f(α)=sin2α+2sinαcosα+3cos2α,求f(α)的最小值,并指出取得最小值時(shí)的α.

查看答案和解析>>

已知△ABC的面積S滿足
3
2
≤S≤
3
2
,且
AB
BC
=3
,
AB
BC
的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=3sin2θ+2
3
sinθ•cosθ+cos2θ
的最大值及最小值.

查看答案和解析>>

已知△ABC的面積S滿足4≤S≤4
3
,且
AB
AC
=-8.
(Ⅰ)求角A的取值范圍;
(Ⅱ)若函數(shù)f(x)=cos2
x
4
-2sin2
x
4
+3
3
sin
x
4
•cos
x
4
,求f(A)的最大值.

查看答案和解析>>

(12分)已知△ABC的面積S滿足

   (1)求的取值范圍;

   (2)求函數(shù)的最大值

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.  14.3  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解證:設(shè)PA=1.

   (I)由題意PA=BC=1,AD=2.……………………………………2分

      

       由勾股定理逆定理得ACCD.……………………………………3分

       又∵PA⊥面ABCD,CDABCD,

       ∴PACD. 又PAAC=A,∴CD⊥面PAC.……………………5分

       又CDPCD,∴面PAD⊥面PCD.……………………6分

   (II)作CFAB交于ADF,作EFAP交于PDE,連接CE.……8分

文本框:         ∵CFAB,EFPA,CFEF=F,PAAB=A,

       ∴平面EFC∥平面PAB.………………10分

       又CE平面EFC,∴CE∥平面PAB.

       ∵BC=,AF=BC,

       ∴FAD的中點(diǎn),∴EPD中點(diǎn).

       故棱PD上存在點(diǎn)E,且EPD中點(diǎn),使CE∥面PAB.……………………12分

19.(本小題滿分12分)

       解:(I)設(shè)捕撈n年后開始盈利,盈利為y元,

       則…………3分

       當(dāng)y>0時(shí),得

       解得

       所以,該船捕撈3年后,開始盈利.……………………………………6分

   (II)①年平均盈利為,

       當(dāng)且僅當(dāng)2n=,即n=7時(shí),年平均盈利最大.……………………8分

       ∴經(jīng)過7年捕撈后年平均盈利最大,共盈利12×7+26=110萬元.…………9分

       ②的最大值為102.…11分

       ∴經(jīng)過10年捕撈后盈利總額達(dá)到最大,共盈利102+10=112萬元.

       故方案②較為合算.…………………………………………………………12分

20.(本小題滿分12分)

       解:(I)由題意知

       是等差數(shù)列.…………………………………………2分

      

       ………………………………5分

   (II)由題設(shè)知

      

       是等差數(shù)列.…………………………………………………………8分

      

       ………………………………10分

       ∴當(dāng)n=1時(shí),;

       當(dāng)

       經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

21.(本小題滿分12分)

       解:(I)                令…………………3分

       當(dāng)0<x<1時(shí),單調(diào)遞增;

       當(dāng)單調(diào)遞減.

       …………………………6分

   (II)由(I)知,當(dāng)x=1時(shí),取得最大值,

       即…………………………………………………………8分

       由題意恒成立,

       ……………………………………………10分

       解得a>2或a<-1,即所求a的范圍(-∞,-1)∪(2,+∞).…………12分

22.(本小題滿分14分)

       解:(I)由已知得設(shè)

       由

       …………………………………………2分

      

           同理…………………………………………4分

       …………6分

   (II)當(dāng)m=0時(shí),A(1,),B(1,-),D(4,),E(4,-).

       ∵ABED為矩形,∴N………………8分

       當(dāng)

      

       ,即A、N、E三點(diǎn)共線.……………………………………12分

       同理可證,B、ND三點(diǎn)共線.

       綜上,對(duì)任意m,直線AE、BD相交于定點(diǎn)…………………14分

 

 


同步練習(xí)冊(cè)答案