10.已知函數(shù)對(duì)一切實(shí)數(shù)都滿足.則函數(shù)的圖象關(guān)于 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時(shí),f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=6x–6x2,設(shè)函數(shù)g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…

(1)求證:如果存在一個(gè)實(shí)數(shù)x0,滿足g1(x0)=x0,那么對(duì)一切n∈N,gn(x0)=x0都成立;

(2)若實(shí)數(shù)x0滿足gn(x0)=x0,則稱x0為穩(wěn)定不動(dòng)點(diǎn),試求出所有這些穩(wěn)定不動(dòng)點(diǎn);

(3)設(shè)區(qū)間A=(–∞,0),對(duì)于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,

n≥2時(shí),gn(x)<0  試問是否存在區(qū)間BAB),對(duì)于區(qū)間內(nèi)任意實(shí)數(shù)x,只要n≥2,都有gn(x)<0.

查看答案和解析>>

已知函數(shù)+,,滿足,且對(duì)一切實(shí)數(shù)都有成立,則有(   )

A.     B.        C.         D.

 

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時(shí),f(x)取得極小值數(shù)學(xué)公式
(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)時(shí),f(x)取得極小值
(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案