8.[解析]B 輸入.輸出的是. 查看更多

 

題目列表(包括答案和解析)

已知曲線C:(m∈R)

(1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為

,得

因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本AN和直線AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線。

 

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過(guò)C點(diǎn),|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.

(Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.

【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力   第一問(wèn)要利用相似比得到結(jié)論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)

第二問(wèn),  

當(dāng)且僅當(dāng)

(3)令

∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

直線x+-2=0與圓x2+y2=4相交于A,B兩點(diǎn),則弦AB的長(zhǎng)度等于

A.    B .     C.        D.1

【解析】B正確.

 

查看答案和解析>>

【解析】B.由題得三視圖對(duì)應(yīng)的直觀圖是如圖所示的直四棱柱,

。所以選B

 


查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱軸為

(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、bc分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問(wèn)利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問(wèn)中,利用第一問(wèn)的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因?yàn)?/p>

由余弦定理得,……11分故

 

查看答案和解析>>


同步練習(xí)冊(cè)答案