若數(shù)列{an}滿(mǎn)足.其中d為常數(shù).則稱(chēng)數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿(mǎn)足 查看更多

 

題目列表(包括答案和解析)

若數(shù)列{an}滿(mǎn)足an+12-an2=d,其中d為常數(shù),則稱(chēng)數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿(mǎn)足an>0,a1=1,a5=3.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列{
a
2
n
(
1
2
)n}
的前n項(xiàng)和.
(3)記bn=nan2,則當(dāng)實(shí)數(shù)k大于4時(shí),不等式kbn大于n(4-k)+4能否對(duì)于一切的n∈N*恒成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

若數(shù)列{an}滿(mǎn)足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱(chēng)數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

若數(shù)列{an}滿(mǎn)足
a
2
n+1
-
a
2
n
=d(其中d是常數(shù),n∈N),則稱(chēng)數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

若數(shù)列{bn}滿(mǎn)足:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱(chēng)數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的前9項(xiàng)的和T9
(2)設(shè)數(shù)列{an}滿(mǎn)足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項(xiàng)和為Sn,試研究:是否存在實(shí)數(shù)a,使得數(shù)列{Sn}有連續(xù)的兩項(xiàng)都等于50.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

若數(shù)列{an}滿(mǎn)足an+12-an2=d,其中d為常數(shù),則稱(chēng)數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿(mǎn)足an>0,a1=1,a5=3.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列數(shù)學(xué)公式的前n項(xiàng)和.
(3)記bn=nan2,則當(dāng)實(shí)數(shù)k大于4時(shí),不等式kbn大于n(4-k)+4能否對(duì)于一切的n∈N*恒成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題

C B B A B   A A A DD    C C

二、填空題

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為   ….3分

①當(dāng)n=3時(shí),的概率為    …6分

時(shí),有

它的概率為     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)證明:取中點(diǎn),連接、

       ∵△是等邊三角形,∴

       又平面⊥平面,

       ∴⊥平面,∴在平面內(nèi)射影是

       ∵=2,,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴

       由三垂線(xiàn)定理知        ……….(6分)

(2)取AP的中點(diǎn)E及PD的中點(diǎn)F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由題知點(diǎn)的坐標(biāo)分別為,,

于是直線(xiàn)的斜率為,

所以直線(xiàn)的方程為,即為.…………………4分

 

(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為

,

所以,

于是

點(diǎn)到直線(xiàn)的距離,

所以.

因?yàn)?sub>,于是,

所以的面積范圍是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,,得

,,

于是,).

所以

所以為定值.               ……………………………………………12分

22.解(Ⅰ)由得,

數(shù)列{an}的通項(xiàng)公式為      4分

(Ⅱ)

設(shè)      ①

 

      ②

①―②得

=

 

即數(shù)列的前n項(xiàng)和為           9分

(Ⅲ)解法1:不等式恒成立,

對(duì)于一切的恒成立

設(shè),當(dāng)k>4時(shí),由于對(duì)稱(chēng)軸,且而函數(shù)是增函數(shù),不等式恒成立

即當(dāng)k<4時(shí),不等式對(duì)于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即對(duì)于一切恒成立

而k>4

恒成立,故當(dāng)k>4時(shí),不等式對(duì)于一切的恒成立 (14分)

 


同步練習(xí)冊(cè)答案