下面玩擲骰子放球游戲.若擲出1點或6點.甲盒放一球,若擲出2點.3點.4點或5點.乙盒放一球.設擲n次后.甲.乙盒內的球數(shù)分別為 查看更多

 

題目列表(包括答案和解析)

下面玩擲骰子放球游戲,若擲出1點,甲盒中放一球,若擲出2點或3 點,乙盒中放一球,若擲出4點、5點或6點,丙盒中放一球,設擲n次后,甲、乙、丙各盒內的球數(shù)分別為x,y,z.
(1)n=3時,求x,y,z成等差數(shù)列的概率.
(2)當n=6時,求x,y,z成等比數(shù)列的概率.

查看答案和解析>>

下面玩擲骰子放球游戲,若擲出1點,甲盒中放一球,若擲出2點或3 點,乙盒中放一球,若擲出4點、5點或6點,丙盒中放一球,設擲n次后,甲、乙、丙各盒內的球數(shù)分別為x,y,z.
(1)n=3時,求x,y,z成等差數(shù)列的概率.
(2)當n=6時,求x,y,z成等比數(shù)列的概率.

查看答案和解析>>

下面玩擲骰子放球游戲,若擲出1點,甲盒中放一球,若擲出2點或3 點,乙盒中放一球,若擲出4點、5點或6點,丙盒中放一球,設擲n次后,甲、乙、丙各盒內的球數(shù)分別為x,y,z.
(1)n=3時,求x,y,z成等差數(shù)列的概率.
(2)當n=6時,求x,y,z成等比數(shù)列的概率.

查看答案和解析>>

下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設擲n次后,甲、乙盒內的球數(shù)分別為x、y.
(1)當n=3時,設x=3,y=0的概率;
(2)當n=4時,設|x-y|=ξ,求ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設擲n次后,甲、乙盒內的球數(shù)分別為x、y.
(1)當n=3時,設x=3,y=0的概率;  
(2)當n=4時,求|x-y|=2的概率.

查看答案和解析>>

一、選擇題

C B B A B   A A A DD    C C

二、填空題

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為   ….3分

①當n=3時,的概率為    …6分

時,有

它的概率為     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)證明:取中點,連接、

       ∵△是等邊三角形,∴

       又平面⊥平面,

       ∴⊥平面,∴在平面內射影是

       ∵=2,,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴,

       由三垂線定理知        ……….(6分)

(2)取AP的中點E及PD的中點F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由題知點的坐標分別為,,

于是直線的斜率為,

所以直線的方程為,即為.…………………4分

 

(Ⅱ)設兩點的坐標分別為

,

所以,

于是

到直線的距離,

所以.

因為,于是,

所以的面積范圍是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,,得

,,

于是).

所以

所以為定值.               ……………………………………………12分

22.解(Ⅰ)由得,

數(shù)列{an}的通項公式為      4分

(Ⅱ)

      ①

 

      ②

①―②得

=

 

即數(shù)列的前n項和為           9分

(Ⅲ)解法1:不等式恒成立,

對于一切的恒成立

,當k>4時,由于對稱軸,且而函數(shù)是增函數(shù),不等式恒成立

即當k<4時,不等式對于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即對于一切恒成立

而k>4

恒成立,故當k>4時,不等式對于一切的恒成立 (14分)

 


同步練習冊答案