(C)(-.) (D)(-.-) 查看更多

 

題目列表(包括答案和解析)

(08年寧夏、海南卷文)已知復數(shù),則(    )

A. 2          B. -2      C. 2i      D. -2i

查看答案和解析>>

(08年寧夏、海南卷文)函數(shù)的最小值和最大值分別為(    )

A. -3,1                   B. -2,2             C. -3,                 D. -2,

查看答案和解析>>

(06年山東卷)已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(6) 的值為(   )

(A) -1         (B)0            (C)1             (D)2

查看答案和解析>>

(06年山東卷)在ΔABC中,角A、B、C的對邊分別為a、b、c,已知A=,a=,b=1,則c=(    )

(A)1         (B)2            (C) -1             (D)

查看答案和解析>>

(08年上海卷)若數(shù)列{an}是首項為1,公比為a的無窮等比數(shù)列,且{an}各項的和為a,則a的值是(   )  

A.1          B.2           C.            D.

查看答案和解析>>

一.選擇題:DABBB ACACA

解析:1:由題干可得:故選.

2:為拋物線的內(nèi)部(包括周界),為動圓的內(nèi)部(包括周界).該題的幾何意義是為何值時,動圓進入?yún)^(qū)域,并被所覆蓋.

是動圓圓心的縱坐標,顯然結(jié)論應是,故可排除,而當時,(可驗證點到拋物線上點的最小距離為).故選.

 

3:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函數(shù),得f(-0.5)=-f(0.5)=-0.5,所以選B.

 

4:取a=100,b=10,此時P=,Q==lg,R=lg55=lg,比較可知選PQR,所以選B

5: f(x+)=sin[-2(x+)]+sin[2(x+)]=-f(x),而f(x+π)=sin[-2(x+π)]+sin[2(x+π)]=f(x).所以應選B;

 

6:在同一直角坐標系中作出圓x+y=4和直線4x+3y-12=0后,由圖可知距離最小的點在第一象限內(nèi),所以選A.

7:不等式的“極限”即方程,則只需驗證x=2,2.5,和3哪個為方程的根,逐一代入,選C.

8:當正n棱錐的頂點無限趨近于底面正多邊形中心時,則底面正多邊形便為極限狀態(tài),此時棱錐相鄰兩側(cè)面所成二面角α→π,且小于π;當棱錐高無限大時,正n棱柱便又是另一極限狀態(tài),此時α→π,且大于π,故選(A).

9:取滿足題設(shè)的特殊函數(shù)f(x)=x,g(x)=|x|,則f(b)-f(-a)=a+b,g(a)-g(-b)=a-b,又f(a)-f(-b)=a+b,g(b)-g(-a)=b-a;∴選(C).

 

10:作直線和圓的圖象,從圖中可以看出:

的取值范圍應選(A).

 

 

二.填空題:11、;  12、;

13、;   14、(x-1)2+(y-1)2=2;15、;

解析:

11根據(jù)不等式解集的幾何意義,作函數(shù)

函數(shù)的圖象(如圖),從圖上容易得出實數(shù)a的取

值范圍是。

12: 應用復數(shù)乘法的幾何意義,得

     

      ,

于是        故應填 

13:中獎號碼的排列方法是: 奇位數(shù)字上排不同的奇數(shù)有種方法,偶位數(shù)字上排偶數(shù)的方法有,從而中獎號碼共有種,于是中獎面為

  故應填

14:解:由=,

,化簡得(x-1)2+(y-1)2=2

15.解:依題意,=2,5,=15,=

三.解答題:

16.解:(1)由,解之得  ……………………5分

(2)  …………………………9分

         …………………………11分

  …………………………12分

17.解:(I)的取值為1,3,又

ξ

1

3

P

 

 

       ∴ξ的分布列為                                   …………………………5分

 

       ∴Eξ=1×+3×=.                        ………………………………6分

   (II)當S8=2時,即前八秒出現(xiàn)“○”5次和“×”3次,又已知

       若第一、三秒出現(xiàn)“○”,則其余六秒可任意出現(xiàn)“○”3次;

       若第一、二秒出現(xiàn)“○”,第三秒出現(xiàn)“×”,則后五秒可任出現(xiàn)“○”3次.

       故此時的概率為…………12分

18.解:(Ⅰ)∵函數(shù)是奇函數(shù),則

  ∴   …………………………2分

   解得

.   …………………………5分

(Ⅱ)由(Ⅰ)知,     ∴,   ………………6分

  …………………………8分

 ∴,即函數(shù)在區(qū)間上為減函數(shù).   …………………………9分

(Ⅲ)由=0,   …………………………11分

  ∵當,,∴ , 

 即函數(shù)在區(qū)間上為增函數(shù)   …………………………13分

是函數(shù)的最小值點,即函數(shù)取得最小值.  ………14分

19.解:(Ⅰ)設(shè)正三棱柱的側(cè)棱長為.取中點,連

是正三角形,.  …………………………2分

又底面側(cè)面,且交線為側(cè)面

,則直線與側(cè)面所成的角為.   ……………………4分

中,,解得

此正三棱柱的側(cè)棱長為.  …………………………5分

(Ⅱ)如圖,建立空間直角坐標系

.  …………………………7分

設(shè)為平面的法向量.

                       …………………………9分

又平面的一個法向量

結(jié)合圖形可知,二面角的大小為  …………………………11分

 

(Ⅲ):由(Ⅱ)得  …………………………12分

到平面的距離

                                             …………………………14分

20.解:(Ⅰ)當時,原不等式即,解得

    ∴------------------------------2分

(Ⅱ)原不等式等價于

……………………………………………..4分

………………………………………………………..6分

……8分

(Ⅲ)∵

n=1時,;n=2時,

n=3時,;n=4時,

n=5時,;n=6時,…………………………………………9分

猜想: 下面用數(shù)學歸納法給出證明

①當n=5時,,已證…………………………………………………….10分

②假設(shè)時結(jié)論成立即

那么n=k+1時,

范圍內(nèi),恒成立,則,即

由①②可得,猜想正確,即時,…………………………………..  13分

綜上所述:當n=2,4時,;當n=3時,;當n=1或;---14分

21.解:(Ⅰ)由條件得M(0,-),F(xiàn)(0,).設(shè)直線AB的方程為

       y=kx+,A(,),B(,)

       則,,Q().   …………………………2分

       由.

       ∴由韋達定理得+=2pk,?=-    …………………………3分

       從而有= +=k(+)+p=2pk÷p.

       ∴?的取值范圍是.      …………………………4分

   (Ⅱ)拋物線方程可化為,求導得.

       ∴       =y     .

       ∴切線NA的方程為:y-.

       切線NB的方程為:  …………………………6分

       由解得∴N()

       從而可知N點Q點的橫坐標相同但縱坐標不同.

       ∴NQ∥OF.即    …………………………7分

       又由(Ⅰ)知+=2pk,?=-p

       ∴N(pk,-).      …………………………8分

       而M(0,-)  ∴

       又. ∴.       …………………………9分

   (Ⅲ)由.又根據(jù)(Ⅰ)知

       ∴4p=pk,而p>0,∴k=4,k=±2.   …………………………10分

       由于=(-pk,p),  

       ∴

       從而.         …………………………11分

       又||=,||=

       ∴.

       而的取值范圍是[5,20].

       ∴5≤5p2≤20,1≤p2≤4.   …………………………13分

       而p>0,∴1≤p≤2.

       又p是不為1的正整數(shù).

       ∴p=2.

       故拋物線的方程:x2=4y.      …………………………14分


同步練習冊答案