(A)., (B) , 查看更多

 

題目列表(包括答案和解析)

A,B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2.根據(jù)市場(chǎng)分析,X1和X2的分布列分別為
X1  5%  10%    X2 2%  8%  12% 
0.8   0.2   P  0.2  0.5  0.3
(Ⅰ)在A,B兩個(gè)項(xiàng)目上各投資100萬元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差DY1,DY2;
(Ⅱ)將x(0≤x≤100)萬元投資A項(xiàng)目,100-x萬元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤(rùn)的方差與投資B項(xiàng)目所得利潤(rùn)的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.(注:D(aX+b)=a2DX)

查看答案和解析>>

a
=(1,1),
b
=(1,0),
c
滿足
a
c
=0,且|
a
|
=|
c
|
,
b
c
>0
(I)求向量
c

(II)若映射f:(x,y)→(x′,y′)=x
a
+y
c

①求映射f下(1,2)原象;
②若將(x、y)作點(diǎn)的坐標(biāo),問是否存在直線l使得直線l上任一點(diǎn)在映射f的作用下,仍在直線上,若存在求出l的方程,若不存在說明理由.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

A、B兩個(gè)代表隊(duì)進(jìn)行乒乓球?qū)官�,每�?duì)三名隊(duì)員,A隊(duì)隊(duì)員是A1,A2,A3,B隊(duì)隊(duì)員是B1,B2,B3,按以往多次比賽的統(tǒng)計(jì),對(duì)陣隊(duì)員之間勝負(fù)概率如下:
對(duì)陣隊(duì)員 A隊(duì)隊(duì)員勝的概率 A隊(duì)隊(duì)員負(fù)的概率
A1對(duì)B1
2
3
1
3
A2對(duì)B2
2
5
3
5
A3對(duì)B3
2
5
3
5
現(xiàn)按表中對(duì)陣方式出場(chǎng),每場(chǎng)勝隊(duì)得1分,負(fù)隊(duì)得0分,設(shè)A隊(duì)、B隊(duì)最后所得總分分別為ξ、η.
(1)求ξ、η的概率分布;
(2)求Eξ,Eη.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

A袋中有1張10元和1張5元的錢幣,B袋中有2張10元和1張5元的錢幣,從A袋中任取一張錢幣與B袋任取一張錢幣互換,這樣的互換進(jìn)行了一次后:
求:(1)A袋中10元錢幣恰是一張的概率;
(2)A袋中10元錢幣至少是一張的概率.

查看答案和解析>>

15、“a,b為異面直線”是指:①a∩b=∅,且a不平行于b;②a?平面α,b?平面β,且a∩b=∅;③a?平面α,b?平面β,且a∩β=∅;④a?平面α,b?平面α;⑤不存在平面α能使a?α,b?α.成立.其中正確的序號(hào)是
①⑤

查看答案和解析>>

一.選擇題:DDCAB DDDAB

解析:1:,

,

而i,j為互相垂直的單位向量,故可得。故選

2:∵ ∴0<b<a<1. 由指數(shù)函數(shù)的單調(diào)性可知:,又∵ ∴選(D)

3:作y=與y=的圖象,從圖中可以看出:兩曲線有3個(gè)交點(diǎn),即方程有3個(gè)實(shí)根.選(C)


4:由斜率去篩選,則可排除(C)、(D);再用點(diǎn)(-1,3)去篩選,代入(A)成立,

 ∴應(yīng)選(A).

 

5:取α= ±、±,代入求出sinα、tanα 、cotα 的值,易知α=-適合題設(shè)條件,∴應(yīng)選(B).


      M - i
              2 

6:由復(fù)數(shù)模的幾何意義,畫出右圖,可知當(dāng)圓上的點(diǎn)到M的距離最大時(shí)即為|z-i|最大。所以選D

 

7: ∵球的半徑R不小于△ABC的外接圓半徑r=, 則S=4πR2≥4πr2π>5π,故選(D).

8:當(dāng)θ0時(shí),sin(sinθ)0,cosθ1,cos(cosθ)cos1,故排除A,B.

當(dāng)θ時(shí),cos(sinθ)cos1,cosθ0,故排除C,因此選D.

9:由于的含義是于是若成立,則有成立;同理,若成立,則也成立,以上與指令“供選擇的答案中只有一個(gè)正確”相矛盾,故排除.再考慮,取代入得,顯然,排除.故選.

10:選項(xiàng)暗示我們,只要判斷出直線的條數(shù)就行,無須具體求出直線方程。以A(1,2)為圓心,1為半徑作圓A,以B(3,1)為圓心,2為半徑作圓B。由平面幾何知識(shí)易知,滿足題意的直線是兩圓的公切線,而兩圓的位置關(guān)系是相交,只有兩條公切線。故選B。

 

二.填空題:11、;12、; 13、;14、-1;15、4,

解析:

11: ,顯然集合M中有90個(gè)元素,其真子集的個(gè)數(shù)是,應(yīng)填.

12:容易發(fā)現(xiàn),于是   原式=,應(yīng)填

13:記橢圓的二焦點(diǎn)為,有

則知

    顯然當(dāng),即點(diǎn)P位于橢圓的短軸的頂點(diǎn)處時(shí),m取得最大值25.

    故應(yīng)填

14.(略)

15.(略)

三.解答題:

16.解:(1)由題設(shè),得

-----------------3分

因?yàn)?sub>垂直   即

. 又,故,∴的值為2.   ------------------6分

(2)當(dāng)垂直時(shí),

 ------------------8分

,則------------------10分

  ------------------12分

17.解:(I)基本事件總數(shù)為

若使方程有實(shí)根,則,即。------------------2分

當(dāng)時(shí),;  當(dāng)時(shí),; ------------------3分

 當(dāng)時(shí),;   當(dāng)時(shí),;  ------------------4分

 當(dāng)時(shí),;     當(dāng)時(shí),,      ------------------5分

目標(biāo)事件個(gè)數(shù)為

 因此方程 有實(shí)根的概率為------------------6分

(II)由題意知,,則 ,

的分布列為

0

1

2

P

的數(shù)學(xué)期望    ------------------10分

(III)記“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”為事件M,“方程 有實(shí)根” 為事件N,則,,   .------------------12分

18.解:(Ⅰ),                            

由題意得,的兩個(gè)根,

解得,.                      ------------------2分

再由可得

.  ------------------4分

(Ⅱ),

當(dāng)時(shí),;當(dāng)時(shí),;------------------5分
當(dāng)時(shí),;當(dāng)時(shí),;------------------6分
當(dāng)時(shí),.∴函數(shù)在區(qū)間上是增函數(shù);------------------7分
在區(qū)間上是減函數(shù);在區(qū)間上是增函數(shù).
函數(shù)的極大值是,極小值是.         ------------------9分

(Ⅲ)函數(shù)的圖象是由的圖象向右平移個(gè)單位,向上平移4個(gè)單位得到,

所以,函數(shù)在區(qū)間上的值域?yàn)?sub>).-------------10分

,∴,即.                           

于是,函數(shù)在區(qū)間上的值域?yàn)?sub>.------------------12分

的單調(diào)性知,,即

綜上所述,應(yīng)滿足的條件是:,且------------------14分

 

19.(Ⅰ)證明:連結(jié),連結(jié).

是正方形,∴ 的中點(diǎn). ----------1分

的中點(diǎn), ∴的中位線.  ∴.  ----------2分

 又∵平面, 平面, ----------3分

平面.------------------4分

(II)如圖,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,

故設(shè),則

.  ----------6分

*底面,

是平面的法向量,.----------7分

設(shè)平面的法向量為,

,

 

  即 

 ∴     令,則.  ----------9分

,

∴二面角的余弦值為. ------------------10分

(III),

----------11分

   又.----------12分

.  又平面    ----------13分

 ∴平面⊥平面.     ------------------14分

 

20.解:(Ⅰ)易知,橢圓的半焦距為:,

 又拋物線的準(zhǔn)線為:.    ----------2分

設(shè)雙曲線M的方程為,依題意有,

,又.

∴雙曲線M的方程為. ----------4分

(Ⅱ)設(shè)直線與雙曲線M的交點(diǎn)為、兩點(diǎn)

聯(lián)立方程組 消去y得  ,-------5分

兩點(diǎn)的橫坐標(biāo)是上述方程的兩個(gè)不同實(shí)根, ∴

,

從而有,.   ----------7分

.

①     若,則有 ,即 .

∴當(dāng)時(shí),使得.    ----------10分

② 若存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱,則必有 ,

因此,當(dāng)m=0時(shí),不存在滿足條件的k;

當(dāng)時(shí),由

  

∵A、B中點(diǎn)在直線上,

,代入上式得

,又, ∴----------13分

代入并注意到,得 .

∴當(dāng)時(shí),存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱----------14分

 

21.解(I)三角形數(shù)表中前行共有個(gè)數(shù),

 第行最后一個(gè)數(shù)應(yīng)當(dāng)是所給奇數(shù)列中的第項(xiàng)。

  故第行最后一個(gè)數(shù)是        

  因此,使得的m是不等式的最小正整數(shù)解。----------4分

  由得

  ----------6分

于是,第45行第一個(gè)數(shù)是 

     ----------7分

(II),。 

故        ----------9分

 第n行最后一個(gè)數(shù)是,且有n個(gè)數(shù),若將看成第n行第一個(gè)數(shù),則第n行各數(shù)成公差為-2的等差數(shù)列,故。

  故

   ,

    兩式相減得:

                 

        ----------13分

         ----------14分


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹