(C),(D). 查看更多

 

題目列表(包括答案和解析)

(1)y=tanx在定義域上是增函數(shù);
(2)y=sinx在第一、第四象限是增函數(shù);
(3)y=sinx與y=cosx在第二象限都是減函數(shù);
(4)y=sinx在x∈[-
π
2
π
2
]
上是增函數(shù),上述四個(gè)命題中,正確的個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(理)已知函數(shù)f(x)=αx3+bx2+cx+d(a、b、c、d∈R)為奇函數(shù),且在f′(x)min=-1(x∈R),
lim
x→0
f(3+x)-f(3)
x
=8

(1)求函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的圖象與函數(shù)m(x)=nx2-2x的圖象有三個(gè)不同的交點(diǎn),且都在y軸的右方,求實(shí)數(shù)n的取值范圍;
(3)若g(x)與f(x)的表達(dá)式相同,是否存在區(qū)間[a,b],使得函數(shù)g(x)的定義域和值域都是[a,b],若存在,求出滿足條件的一個(gè)區(qū)間[a,b];若不存在,說明理由.

查看答案和解析>>

28、(文)已知某函數(shù)f(x)=dx3+cx2+bx+a,滿足f′(x)=-3x2+3.
(1)求實(shí)數(shù)d、c、b的值;
(2)求函數(shù)f(x)的極值;
(3)實(shí)數(shù)a為何值時(shí),函數(shù)f(x)與x軸有只有兩個(gè)交點(diǎn).

查看答案和解析>>

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
AN
=
d
,試用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
,
AC
=
b
若P,Q,S為線段BC的四等分點(diǎn),試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

一.選擇題:CBDCC BDBDA

解析:1: 由文氏圖可得結(jié)論(C).

2:由已知得:(-2)=0,(-2) =0;即得:==2,∴cos<,>=,∴選(B)

 

3:由于受條件sin2θ+cos2θ=1的制約,故m為一確定的值,于是sinθ,cosθ的值應(yīng)與m的值無關(guān),進(jìn)而推知tan的值與m無關(guān),又<θ<π,<<,∴tan>1,故選D。

4:由于,從而函數(shù)的一個(gè)背景為正切函數(shù)tanx,取,可得必有一周期為4。故選C。

 

5:解此題具有很大的迷惑性,注意題目隱含直線AB的方程就是,它過定點(diǎn)(0,2),只有C項(xiàng)滿足。故選C。

 

6:生活常識(shí)告訴我們利息稅的稅率是20%。故選B。

 

7:四個(gè)選項(xiàng)中只有答案D含有分?jǐn)?shù),這是何故?宜引起高度警覺,事實(shí)上,將x值取4.5代入驗(yàn)證,不等式成立,這說明正確選項(xiàng)正是D,而無需繁瑣地解不等式。

 

8:(用排除法)七人并排站成一行,總的排法有種,其中甲、乙兩人相鄰的排法有2×種.因此,甲、乙兩人必需不相鄰的排法種數(shù)有:-2×=3600,對(duì)照后應(yīng)選B;

9:作直線的圖象和半圓,從圖中可以看出: 的取值范圍應(yīng)選(D).

:求與方程實(shí)數(shù)根個(gè)數(shù)有關(guān)的問題常用圖解法.

10:如圖,將正四面體ABCD補(bǔ)形成正方體,則正四面體、正方體的中心與其外接球的球心共一點(diǎn).因?yàn)檎拿骟w棱長(zhǎng)為,所以正方體棱長(zhǎng)為1,從而外接球半徑R=.故S=3.

 

 

 

 

二.填空題:11、;  12、; 13、;

14、+1;  15、3;

解析:11:,由復(fù)合函數(shù)的增減性可知,上為增函數(shù),∴,∴。

 12:計(jì)算機(jī)進(jìn)行運(yùn)算:時(shí),它表示的表達(dá)式是,當(dāng)其有意義時(shí),得,解得

13: 本題是一道很好的開放題,解題的開竅點(diǎn)是:每個(gè)面的三條棱是怎樣構(gòu)造的,依據(jù)“三角形中兩邊之和大于第三邊”,就可否定{1,1,2},從而得出{1,1,1},{1,2,2},{2,2,2}三種形態(tài),再由這三類面構(gòu)造滿足題設(shè)條件的四面體,最后計(jì)算出這三個(gè)四面體的體積分別為: , ,,故應(yīng)填.、 、 中的一個(gè)即可.

14.解:直線:化為一般方程:,點(diǎn)P化為點(diǎn),則點(diǎn)到直線的距離為

15解:由△COF∽△PDF得,即=

==,即=,

解得,故=3

三.解答題:

16.解:當(dāng)P為真時(shí),有   ……4分

 當(dāng)Q為真時(shí),有  ……5分

            ……6分

由題意:“P或Q”真,“P且Q”為假 等價(jià)于                         

(1)P真Q假:           ……8分

(2)Q真P假:     ……11分                  

綜合(1)(2)的取值范圍是  ……12分

17.解:(1)∵

   ∴, 即AB邊的長(zhǎng)度為  ……………………3分

(2) 由-------------①

  即-------------②

由①②得,   由正弦定理得

    ∴-- ……………………8分

(3) ∵,由(2)中①得  由余弦定理得= 

=- ……………………12分

18.解:(Ⅰ),,     ……………1分

由題意,知,

                                    ……………………2分

               …………………3分

①     當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)增加,

不存在單調(diào)減區(qū)間;                                       ……………………5分

②     當(dāng)時(shí),,有

+

-

+

當(dāng)時(shí),函數(shù)存在單調(diào)減區(qū)間,為         ……………7分

③     當(dāng)時(shí), ,有

+

-

+

當(dāng)時(shí),函數(shù)存在單調(diào)減區(qū)間,為           …………9分

(Ⅱ)由(Ⅰ)知:若不是函數(shù)的極值點(diǎn),則,

            …………………10分

設(shè)點(diǎn)是函數(shù)的圖像上任意一點(diǎn),則,

點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,

(或    

點(diǎn)在函數(shù)的圖像上.

由點(diǎn)的任意性知函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱.          …………………14分

19. [方法一]:(幾何法)

(I)證法一:如圖1,∵底面ABCD是正方形,  ∴BC⊥DC.

∵SD⊥底面ABCD,∴DC是SC在平面ABCD上的射影,               

由三垂線定理得BC⊥SC. …………3分

證法二:如圖1,∵底面ABCD是正方形,  ∴BC⊥DC.          

∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,                     圖1

∴BC⊥平面SDC,∴BC⊥SC. …………3分

(II)解法一:∵SD⊥底面ABCD,且ABCD為正方形,

∴可把四棱錐S―ABCD補(bǔ)形為長(zhǎng)方體A1B1C1S―ABCD,

如圖2,面ASD與面BSC所成的二面角就是面ADSA1與面BCSA1所成的二面角,

∵SC⊥BC,BC//A1S, ∴SC⊥A1S,

又SD⊥A1S,∴∠CSD為所求二面角的平面角.

在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,

由勾股定理得SD=1.

∴∠CSD=45°.即面ASD與面BSC所成的二面角為45°. ……………8分

解法二:如圖3,過點(diǎn)S作直線*在面ASD上,

∵底面ABCD為正方形,在面BSC上,

*為面ASD與面BSC的交線.

∴∠CSD為面ASD與面BSC所成二面角的平面角.

在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,

 由勾股定理得SD=1.

∴∠CSD=45°.即面ASD與面BSC所成的二面角

為 45°。…8分

(III)解法一:如圖3, ∵SD=AD=1,∠SDA=90°, ∴△SDA是等腰直角三角形.

又M是斜邊SA的中點(diǎn),  ∴DM⊥SA. 

∵BA⊥AD,BA⊥SD,AD∩SD=D,∴BA⊥面ASD,SA是SB在面ASD上的射影.

由三垂線定理得DM⊥SB.  ∴異面直線DM與SB所成的角為90°. ……………14分

解法二:如圖4,取AB中點(diǎn)P,連結(jié)MP,DP.

在△ABS中,由中位線定理得 MP//SB,是異面直線DM與SB所成的角.

,

∴在△DMP中,有DP2=MP2+DM2, 

即異面直線DM與SB所成的角為90°. ……………14分

[方法二]:(向量法)

解析:如圖所示,以D為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,

則D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

M(,0,),

∵ SB=,DB=,SD=1,∴ S(0,0,1),……………2分

(I)證明:∵  ,

=0   ∴ ,即BCSC.……………5分

(II)設(shè)二面角的平面角為θ,由題意可知平面ASD的一個(gè)法向量為,設(shè)平面BSC的法向量為,由,

∴ 面ASD與面BSC所成的二面角為45°.……………10分

(III)設(shè)異面直線DM與SB所成角為α,

∵ ,SB=(-1,-1,1),得

∴ 異面直線DM與SB所成角為90°.……………14分

20.解:(1)設(shè)圓心的坐標(biāo)為,如圖過圓心軸于H,

則H為RG的中點(diǎn),在中,…3分

  

 …………………6分

 (2) 設(shè),

直線AB的方程為)則-----①---②

由①-②得,∴,………………9分

∵點(diǎn)在直線上, ∴

∴點(diǎn)M的坐標(biāo)為. ………………10分

同理可得:, ,

∴點(diǎn)的坐標(biāo)為. ………………11分

直線的斜率為,其方程為

,整理得,………………13分

顯然,不論為何值,點(diǎn)均滿足方程,

∴直線恒過定點(diǎn).……………………14分

 

21.解:(Ⅰ)當(dāng)n=1時(shí),D1為Rt△OAB1的內(nèi)部包括斜邊,這時(shí),

        當(dāng)n=2時(shí),D2為Rt△OAB2的內(nèi)部包括斜邊,這時(shí),

        當(dāng)n=3時(shí),D3為Rt△OAB3的內(nèi)部包括斜邊,這時(shí),……, ---3分

由此可猜想=3n。 --------------------------------------------------4分

下面用數(shù)學(xué)歸納法證明:

(1)  當(dāng)n=1時(shí),猜想顯然成立。

(2)  假設(shè)當(dāng)n=k時(shí),猜想成立,即,() ----5分

如圖,平面區(qū)域為Rt內(nèi)部包括斜邊、平面區(qū)域

Rt△內(nèi)部包括斜邊,∵平面區(qū)域比平面區(qū)域多3

個(gè)整點(diǎn), ------- 7分            

 即當(dāng)n=k+1時(shí),,這就是說當(dāng)n=k+1時(shí),

猜想也成立,

由(1)、(2)知=3n對(duì)一切都成立。 ---------------------8分

(Ⅱ)∵=3n,   ∴數(shù)列是首項(xiàng)為3,公差為3的等差數(shù)列,

.

  -------------------------10分

    == -------------------------------11分

∵對(duì)一切,恒成立,   ∴

上為增函數(shù) ∴ ---13分

,滿足的自然數(shù)為0,

∴滿足題設(shè)的自然數(shù)m存在,其值為0。 -------------------------14分


同步練習(xí)冊(cè)答案