⑤在一個(gè)2×2列聯(lián)表中.由計(jì)算得k2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%;其中錯(cuò)誤的個(gè)數(shù)是 A.1 B.2 C.3 D.4 查看更多

 

題目列表(包括答案和解析)

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得K2的觀測值k=13.097,則兩個(gè)變量X與Y有關(guān)系的可能性為


  1. A.
    99.9%
  2. B.
    95%
  3. C.
    90%
  4. D.
    無關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得k2=13.097,則其兩個(gè)變量間有關(guān)系的可能性為


  1. A.
    99%
  2. B.
    95%
  3. C.
    90%
  4. D.
    無關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得K2的觀測值k=13.097,則兩個(gè)變量X與Y有關(guān)系的可能性為

[  ]
A.

99.9%

B.

95%

C.

90%

D.

無關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得k2=13.097,則其兩個(gè)變量間有關(guān)系的可能性為

[  ]

A.99%

B.95%

C.90%

D.無關(guān)系

查看答案和解析>>

下列命題中正確的有

①設(shè)有一個(gè)回歸方程=2—3x,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;

②命題P:“”的否定P:“”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(X>1)=p,則P(-1<X<0)=-p;

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=6.679,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系.

A.1個(gè)             B.2個(gè)              C.3個(gè)              D.4個(gè)

本題可以參考獨(dú)立性檢驗(yàn)臨界值表

P(K2≥k)

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

 

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1)

.又,.(6分)

   (2)由,

.(6分)

18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

    <rt id="dtlwo"></rt>
    <td id="dtlwo"></td>
  1. <label id="dtlwo"></label>
    1. 可得:在△PAB中,PA2+AB2=PB2=6。

      所以PA⊥AB

      同理可證PA⊥AD

      故PA⊥平面ABCD (4分)

         (2)取PE中點(diǎn)M,連接FM,BM,

      連接BD交AC于O,連接OE

      ∵F,M分別是PC,PF的中點(diǎn),

      ∴FM∥CE,

      又FM面AEC,CE面AEC

      ∴FM∥面AEC

      又E是DM的中點(diǎn)

      OE∥BM,OE面AEC,BM面AEC

      ∴BM∥面AEC且BM∩FM=M

      ∴平面BFM∥平面ACE

      又BF平面BFM,∴BF∥平面ACE (4分)

         (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

      SㄓACD=1,

          ∴VFACD=VF――ACD=  (4分)

      19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

      設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

      消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

         (2)有方程組得公共弦的方程:

      圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

      ∴弦長l=(定值)               (5分)

      20.解:(1),

      當(dāng)時(shí),取最小值,

      .(6分)

         (2)令,

      ,(不合題意,舍去).

      當(dāng)變化時(shí)的變化情況如下表:

      遞增

      極大值

      遞減

      內(nèi)有最大值

      內(nèi)恒成立等價(jià)于內(nèi)恒成立,

      即等價(jià)于,

      所以的取值范圍為.(6分)

      21.解:(1)

      ,

      ,

      數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

      當(dāng)時(shí),

           (6分)

         (2),

      當(dāng)時(shí),;

      當(dāng)時(shí),,…………①

      ,………………………②

      得:

      也滿足上式,

      .(6分)

      22.解:(1)由題意橢圓的離心率

              

      ∴橢圓方程為……2分

      又點(diǎn)在橢圓上

               ∴橢圓的方程為(4分)

      (2)設(shè)

      消去并整理得……6分

      ∵直線與橢圓有兩個(gè)交點(diǎn)

      ,即……8分

      中點(diǎn)的坐標(biāo)為……10分

      設(shè)的垂直平分線方程:

      ……12分

      將上式代入得

         即 

      的取值范圍為…………(8分)

       

       


      同步練習(xí)冊答案