16.下列4個(gè)命題: ①在△ABC中.∠A>∠B是sinA>sinB的充要條件, ②若a>0,b>0,則a3+b3≥3ab2恒成立, ③對(duì)于函數(shù)f(x)=x2+mx+n,若f>0,則f內(nèi)至多有一個(gè)零點(diǎn), ④y=f的圖象關(guān)于x=2對(duì)稱.其中正確命題序號(hào) . 查看更多

 

題目列表(包括答案和解析)

下列4個(gè)命題:

①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

②若a>0,b>0,則a3+b3≥3ab2恒成立;

③對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);

④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對(duì)稱。

其中正確命題序號(hào)________________。

查看答案和解析>>

下列4個(gè)命題:

    ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

    ②若a>0,b>0,則a3+b3≥3ab2恒成立;

    ③對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);

    ④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對(duì)稱。

其中正確命題序號(hào)________________。

查看答案和解析>>

(08年銀川一中一模理)   下列4個(gè)命題:

   ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

   ②若a>0,b>0,則a3+b3≥3ab2恒成立;

   ③對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);

   ④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對(duì)稱。

其中正確命題序號(hào)________________。

查看答案和解析>>

給出下列四個(gè)命題:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②給定命題p,q,若“p或q”為真,則“p且q”為真;
③設(shè)a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

給出下列四個(gè)命題:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②給定命題p,q,若“p或q”為真,則“p且q”為真;
③設(shè)a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的序號(hào)是( )
A.①③
B.①④
C.②③
D.③④

查看答案和解析>>

一、選擇題:(每題5分,共60分)

    20080416

    二、填空題:每題5分,共20分)

    13.   14.;  15.a=-1或a=-;   

    16.①④

    17.解:(1),

    .又.(6分)

    (2)由,

    .(6分)

    18.證法一:向量法

    證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

    又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

    (2)取B1C的中點(diǎn)D,連接FD、BD

    ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

    ∴四邊形EFBD為平行四邊形    ∴EF∥BD

    又BD平面BCC1B1   

    ∴EF∥面BCC1B1

    (3)過(guò)B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

    ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

    在Rt△BCE中有BE=,BC=,CE=,BH=

    又∠A1CA=      ∴BB1=AA1=AC=2   

    ∴tan∠B1HB=

    19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

    設(shè)圓的圓心坐標(biāo)為(x,y),

    為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

      (2)有方程組得公共弦的方

    程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

    ∴弦長(zhǎng)l=(定值)        (5分)

     

    20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

    (2)P(X≥40)=P(X=40)+P(X=75)=

    (3)

    X

    -30

    5

    40

    75

    P

     

    EX=54(元)    ∴6個(gè)月平均:6×54=324(元)

    21.(1)由已知:   

    依題意得:≥0對(duì)x∈成立

    ∴ax-1≥0,對(duì)x∈恒成立,即a≥,對(duì)x∈恒成立,

    ∴a≥(max,即a≥1.

    (2)當(dāng)a=1時(shí),,x∈[,2],若x∈,則

    若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

    又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

    ∵e3>2.73=19.683>16,

    ∴f()-f(2)>0   

    ∴f()>f(2)  

    ∴f(x)在[,2]上最大值是f(

    ∴f(x)在[,2]最大1-ln2,最小0

    (3)當(dāng)a=1時(shí),由(1)知,f(x)=+lnx在

    當(dāng)n>1時(shí),令x=,則x>1     ∴f(x)>f(1)=0

    即ln>

    22.解:(1)設(shè)橢圓方程為(a>b>0)

         ∴橢圓方程

    (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

    與橢圓交于A、B兩點(diǎn)

    ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

    (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

    設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

    由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

    而k1+k2=+= (*)

    又y1=x1+m  y2=x2+m

    ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

    =x1x2+(m-2)(x1+x2)-4(m-1)

    =2m2-4+(m-2)(-m)-4(m-1)

      =0

    ∴k1+k2=0,證之.

     


    同步練習(xí)冊(cè)答案