(2)過A.B兩點分別作此拋物線的切線.兩切線相交于N點..求證:.. 查看更多

 

題目列表(包括答案和解析)

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦長為.

(1)求p的值;

(2)若直角三角形ABC的三個頂點在拋物線L上,且直角頂點B的橫坐標為1,過點A、C分別作拋物線L的切線,兩切線相交于點D,直線AC與y軸交于點E,當直線BC的斜率在[3,4]上變化時,直線DE斜率是否存在最大值,若存在,求其最大值和此時直線BC的方程;若不存在,請說明理由.

查看答案和解析>>

以下三個關于圓錐曲線的命題中:
①設A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
其中真命題為
②③④
②③④
(寫出所以真命題的序號)

查看答案和解析>>

以下三個關于圓錐曲線的命題中:
①設A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
其中真命題為______(寫出所以真命題的序號)

查看答案和解析>>

以下三個關于圓錐曲線的命題中:
①設A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線-=1與橢圓+y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
其中真命題為    (寫出所以真命題的序號)

查看答案和解析>>

已知拋物線C:,的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點,過A、B兩點分別作拋物線的切線,設兩切線的交點為M

(Ⅰ)求點M的軌跡方程;

(Ⅱ)求證MF⊥AB;

(Ⅲ)設△MAB的面積為S,求S的最小值及此時直線的方程

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

B

D

D

C

D

C

C

D

B

C

<rt id="4dnb1"><mark id="4dnb1"></mark></rt>

<p id="4dnb1"><mark id="4dnb1"></mark></p>
  • 1,3,5

    三、解答題

    17.解:(1)依題意由g(x)得

           f(x)-=sin[2(x+)+]…得f(x)=-sin(2x+)+

           又f(x)=acos(x+)+b=-sin(2x+)++b           比較得a=1,b=0…

       (2)(x)=g(x)-f(x)=sin(2x+)-cos(2x+)-

           =sin(2x+)-…(9分)              ∴2kπ-≤2x+≤2kπ+(k∈Z)

                  kπ-≤x≤kπ+(k∈Z)∴(x)的單調增區(qū)間為[kπ-,kπ+](k∈Z)

           ………………(12分)

    18.解:(1)由于C(n)在各段上都是單調增函數(shù),因此在每一段上不存在買多于n本書比恰好買n本書所花錢少的問題,一定是在各段分界點附近因單價的差別造成買多于n本書比恰好買n本書所花錢少的現(xiàn)象. C(25)=1125=275,C(23)=1223=276,∴C(25)<C(23).1分

    C(24)=1224=288,∴ C(25)<C(24)…………………..…………..2分

    C(49)=4910=490,C(48)=1148=528,∴ C(49)<C(48)

    C(47)=1147=517,∴ C(49)<C(47)

    C(46)=1146=506,∴ C(49)<C(46)

    C(45)=1145=495,∴ C(49)<C(45)……….. ……….………..……..5分

    ∴這樣的n有23,24,45,46,47,48   …….………..……….. ……………6分

    (2)設甲買n本書,則乙買60-n本,且n30,n(不妨設甲買的書少于或等于乙買的書)

    ①當1n11時,4960-n59

    出版公司賺得錢數(shù)…….. …7分

    ②當1224時,3660-48,

    出版公司賺得錢數(shù)

    ③當2530時,3060-35,

    出版公司賺得錢數(shù)……..……….. ………9分

    ∴當時,  當時,

    時,

    故出版公司至少能賺302元,最多能賺384元…….. .………. .……12分

    19.解: (1)D為A1C1的中點. …………………………………2分

    8J43  連結A1B與AB1交于E,

    則E為A1B的中點,DE為平面AB1D與平面A1BC1的交線,

    ∵BC1∥平面AB1D

    ∴BC1∥DE,∴D為A1C1的中點. ……………………………6分

    (2) 解法一:過D作DF⊥A1B1于F,

    由正三棱柱的性質,AA1⊥DF,∴DF⊥平面AB1,

    連結EF、DE,在正三角形A1B1C1中,

    ∵D是A1C1的中點,∴B1D=A1B1=a,…………………7分

    又在直角三角形AA1D中,∵AD==a,∴AD=B1D. ……………8分

    ∴DE⊥AB1,∴可得EF⊥AB1,則∠DEF為二面角A1-AB1-D的平面角. ……10分

    可求得DF=a,∵△B1FE∽△B1AA1,得EF=a,∴∠DEF=,即為所求. ……12分

    20.解:由題意得:①…

    ∵{an}、{bn}都是各項均為正的數(shù)列, 由②得

    代入①得……4分 

    ………7分 ∴數(shù)列{bn}是等差數(shù)列

    由a1=1,b1=及①②兩式得……………12

    21.解:(1)由條件得M(0,-),F(xiàn)(0,).設直線AB的方程為

           y=kx+,A(,),B().

           則,,Q().

           由.

           ∴由韋達定理得+=2pk,?=-

           從而有= +=k(+)+p=………………(4分)

          

                                                    

                  的取值范圍是.……………………………………………(6分)

       (2)拋物線方程可化為,求導得.

          

           ∴切線NA的方程為:y-.

           切線NB的方程為:………………………………………(8分)

           由解得∴N(

           從而可知N點Q點的橫坐標相同但縱坐標不同.

           ∴NQ∥OF.即…………………………………………………………(9分)

           又由(Ⅰ)知+=2pk,?=-p  ∴N(pk,-

           而M(0,-)  ∴

           又. ∴.………………………………………………(12分)

    22.解:(1)

           由k≥-1,得3x2-2ax+1≥0,即a≤恒成立…………(2分)

           ∴a≤(3x+min………………………………………………………………(4分)

           ∵當x∈(0,1)時,3x+≥2=2,當且僅當x=時取等號.

           ∴(3x+min =.故a的取值范圍是(-∞,].……………………(6分)

       (2)設g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]則

           g′(x)=3x2-3a=3(x2-a).………………………………………………………(8分)

       ①當a≥1時,∴g′(x)≤0.從而g(x)在[-1,1]上是減函數(shù).

           ∴g(x)的最大值為g(-1)=3a-1.…………………………………………(9分)

       ②當0<a<1時,g′(x)=3(x+)(x-).

           由g′(x) >0得,x>或x<-:由g′(x)< 0得,-<x<.

           ∴g(x)在[-1,-],[,1]上增函數(shù),在[-,]上減函數(shù).

           ∴g(x)的極大值為g(-)=2a.…………………………………………(10分)

           由g(-)-g(1)=2a+3a-1=(+1)?(2-1)知

           當2-1<0,即0≤a<時,g(-)<g(1)

           ∴g(x)=g(1)=1-3a.…………………………………………(11分)

           當2-1≥0,即<a<1時,g(-)≥g(1)

           ∴g(x)=g(-)=2a.………………………………………………(12分)

       ③當a≤0時,g′(x)≥0,從而g(x)在[-1,1]上是增函數(shù).

           ∴g(x)=g(1)=1-3a………………………………………………………(13分)

           綜上分析,g(x) ………………………………(14分)

     


    同步練習冊答案