10.在數(shù)列{a}中.如果存在非零常數(shù)T.使得a對(duì)于任意正整數(shù)m均成立.那么就稱數(shù)列{a}為周期數(shù)列.其中T叫做數(shù)列{a}的周期. 已知數(shù)列{x}滿足x= 查看更多

 

題目列表(包括答案和解析)

在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列{xn}周期為3時(shí),則該數(shù)列的前2007項(xiàng)的和為
 

查看答案和解析>>

在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)于任意的非零自然數(shù)m均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期,已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如果x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時(shí),該數(shù)列的前2008項(xiàng)和是( 。

查看答案和解析>>

在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)于任意的非零自然數(shù)m均成立,那么就稱數(shù)列{an}的周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知周期數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時(shí),該數(shù)列前2012項(xiàng)和是
1342
1342

查看答案和解析>>

在數(shù)列{an}中,如果存在非零常數(shù)T,使得a m+T=am對(duì)于任意正整數(shù)m均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足x n+1=|xn-x n-1|(n≥2,n∈N),如果x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列{xn}的周期為3時(shí),則該數(shù)列的前2 006項(xiàng)的和為(    )

A.668             B.669               C.1 336                D.1 338

查看答案和解析>>

在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)于任意正整數(shù)m均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如果x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列的周期為3時(shí),則該數(shù)列的前2006項(xiàng)的和為(    )

A.668           B.669                 C.1336              D.1338

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

B

D

D

C

D

C

C

D

B

C

        1,3,5

        三、解答題

        17.解:(1)依題意由g(x)得

               f(x)-=sin[2(x+)+]…得f(x)=-sin(2x+)+

               又f(x)=acos(x+)+b=-sin(2x+)++b           比較得a=1,b=0…

           (2)(x)=g(x)-f(x)=sin(2x+)-cos(2x+)-

               =sin(2x+)-…(9分)              ∴2kπ-≤2x+≤2kπ+(k∈Z)

                      kπ-≤x≤kπ+(k∈Z)∴(x)的單調(diào)增區(qū)間為[kπ-,kπ+](k∈Z)

               ………………(12分)

        18.解:(1)由于C(n)在各段上都是單調(diào)增函數(shù),因此在每一段上不存在買多于n本書比恰好買n本書所花錢少的問題,一定是在各段分界點(diǎn)附近因單價(jià)的差別造成買多于n本書比恰好買n本書所花錢少的現(xiàn)象. C(25)=1125=275,C(23)=1223=276,∴C(25)<C(23).1分

        C(24)=1224=288,∴ C(25)<C(24)…………………..…………..2分

        C(49)=4910=490,C(48)=1148=528,∴ C(49)<C(48)

        C(47)=1147=517,∴ C(49)<C(47)

        C(46)=1146=506,∴ C(49)<C(46)

        C(45)=1145=495,∴ C(49)<C(45)……….. ……….………..……..5分

        ∴這樣的n有23,24,45,46,47,48   …….………..……….. ……………6分

        (2)設(shè)甲買n本書,則乙買60-n本,且n30,n(不妨設(shè)甲買的書少于或等于乙買的書)

        ①當(dāng)1n11時(shí),4960-n59

        出版公司賺得錢數(shù)…….. …7分

        ②當(dāng)1224時(shí),3660-48,

        出版公司賺得錢數(shù)

        ③當(dāng)2530時(shí),3060-35,

        出版公司賺得錢數(shù)……..……….. ………9分

        ∴當(dāng)時(shí),  當(dāng)時(shí),

        當(dāng)時(shí),

        故出版公司至少能賺302元,最多能賺384元…….. .………. .……12分

        19.解: (1)D為A1C1的中點(diǎn). …………………………………2分

        8J43  連結(jié)A1B與AB1交于E,

        則E為A1B的中點(diǎn),DE為平面AB1D與平面A1BC1的交線,

        ∵BC1∥平面AB1D

        ∴BC1∥DE,∴D為A1C1的中點(diǎn). ……………………………6分

        (2) 解法一:過D作DF⊥A1B1于F,

        由正三棱柱的性質(zhì),AA1⊥DF,∴DF⊥平面AB1,

        連結(jié)EF、DE,在正三角形A1B1C1中,

        ∵D是A1C1的中點(diǎn),∴B1D=A1B1=a,…………………7分

        又在直角三角形AA1D中,∵AD==a,∴AD=B1D. ……………8分

        ∴DE⊥AB1,∴可得EF⊥AB1,則∠DEF為二面角A1-AB1-D的平面角. ……10分

        可求得DF=a,∵△B1FE∽△B1AA1,得EF=a,∴∠DEF=,即為所求. ……12分

        20.解:由題意得:①…

        ∵{an}、{bn}都是各項(xiàng)均為正的數(shù)列, 由②得

        代入①得……4分 

        ………7分 ∴數(shù)列{bn}是等差數(shù)列

        由a1=1,b1=及①②兩式得……………12

        21.解:(1)由條件得M(0,-),F(xiàn)(0,).設(shè)直線AB的方程為

               y=kx+,A(,),B(,).

               則,,Q().

               由.

               ∴由韋達(dá)定理得+=2pk,?=-

               從而有= +=k(+)+p=………………(4分)

              

                                                        

                      的取值范圍是.……………………………………………(6分)

           (2)拋物線方程可化為,求導(dǎo)得.

              

               ∴切線NA的方程為:y-.

               切線NB的方程為:………………………………………(8分)

               由解得∴N(

               從而可知N點(diǎn)Q點(diǎn)的橫坐標(biāo)相同但縱坐標(biāo)不同.

               ∴NQ∥OF.即…………………………………………………………(9分)

               又由(Ⅰ)知+=2pk,?=-p  ∴N(pk,-

               而M(0,-)  ∴

               又. ∴.………………………………………………(12分)

        22.解:(1)

               由k≥-1,得3x2-2ax+1≥0,即a≤恒成立…………(2分)

               ∴a≤(3x+min………………………………………………………………(4分)

               ∵當(dāng)x∈(0,1)時(shí),3x+≥2=2,當(dāng)且僅當(dāng)x=時(shí)取等號(hào).

               ∴(3x+min =.故a的取值范圍是(-∞,].……………………(6分)

           (2)設(shè)g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]則

               g′(x)=3x2-3a=3(x2-a).………………………………………………………(8分)

           ①當(dāng)a≥1時(shí),∴g′(x)≤0.從而g(x)在[-1,1]上是減函數(shù).

               ∴g(x)的最大值為g(-1)=3a-1.…………………………………………(9分)

           ②當(dāng)0<a<1時(shí),g′(x)=3(x+)(x-).

               由g′(x) >0得,x>或x<-:由g′(x)< 0得,-<x<.

               ∴g(x)在[-1,-],[,1]上增函數(shù),在[-,]上減函數(shù).

               ∴g(x)的極大值為g(-)=2a.…………………………………………(10分)

               由g(-)-g(1)=2a+3a-1=(+1)?(2-1)知

               當(dāng)2-1<0,即0≤a<時(shí),g(-)<g(1)

               ∴g(x)=g(1)=1-3a.…………………………………………(11分)

               當(dāng)2-1≥0,即<a<1時(shí),g(-)≥g(1)

               ∴g(x)=g(-)=2a.………………………………………………(12分)

           ③當(dāng)a≤0時(shí),g′(x)≥0,從而g(x)在[-1,1]上是增函數(shù).

               ∴g(x)=g(1)=1-3a………………………………………………………(13分)

               綜上分析,g(x) ………………………………(14分)

         


        同步練習(xí)冊(cè)答案