如圖.已知為圓O的直徑.直線與圓O相切于點.直線與弦垂直并相交于點.與弧相交于.連接,,. 查看更多

 

題目列表(包括答案和解析)

如圖,已知半圓O的直徑AB=2,點CAB的延長線上,BC=1,點P為半圓O上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心O分別在PC的兩側,求四邊形OPDC面積的最大值.

查看答案和解析>>

如圖,已知AB⊙O的直徑,C為圓上任意一點,過C的切線分別與過A、B兩點的切線交于P、Q

求證:

查看答案和解析>>

如圖,BC是半圓O的直徑,點D是半圓上一點,過點D作⊙O切線AD,BA⊥DA于點A,BA交半圓于點E.已知BC=10,AD=4.那么直線CE與以點O為圓心,
5
2
為半徑的圓的位置關系是 (  )
A、相離B、相交C、相切D、不確定

查看答案和解析>>

如圖,BC是半圓O的直徑,點D是半圓上一點,過點D作⊙O切線AD,BA⊥DA于點A,BA交半圓于點E.已知BC=10,AD=4.那么直線CE與以點O為圓心,為半徑的圓的位置關系是 ( )
A.相離
B.相交
C.相切
D.不確定

查看答案和解析>>

如圖,BC是半圓O的直徑,點D是半圓上一點,過點D作⊙O切線AD,BA⊥DA于點A,BA交半圓于點E.已知BC=10,AD=4.那么直線CE與以點O為圓心,數(shù)學公式為半徑的圓的位置關系是


  1. A.
    相離
  2. B.
    相交
  3. C.
    相切
  4. D.
    不確定

查看答案和解析>>

 

1.(1)因為,所以

      又是圓O的直徑,所以

      又因為(弦切角等于同弧所對圓周角)

      所以所以

      又因為,所以相似

      所以,即

  (2)因為,所以

       因為,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因為,即

     解得

2.依題設有:

 令,則

 

 

3.將極坐標系內的問題轉化為直角坐標系內的問題

  點的直角坐標分別為

  故是以為斜邊的等腰直角三角形,

  進而易知圓心為,半徑為,圓的直角坐標方程為

      ,即

  將代入上述方程,得

  ,即

4.假設,因為,所以。

又由,則

所以,這與題設矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學歸納法進行證明.

1°.當n=1時,命題顯然成立;

2°.假設當n=k(kN*)時,命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對n=k+1.成立

由1°, 2°,命題對任意的正整數(shù)n成立.

6.(1)因為,,

      ,所以

       故事件A與B不獨立。

   (2)因為

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案