選修4-1幾何證明選講 查看更多

 

題目列表(包括答案和解析)

選修4-1幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C,D兩點,連接DB并延長交⊙O于點E.證明:AC•BD=AD•AB.

查看答案和解析>>

選修4-1幾何證明選講
如圖,圓O的圓心O在Rt△ABC的直角邊BC上,該圓與直角邊AB相切,與斜邊AC交于D,E,AD=DE=EC,AB=
14

(I)求BC的長;
(II)求圓O的半徑.

查看答案和解析>>

選修4-1   幾何證明選講
已知△ABC內(nèi)接于⊙O,BT為⊙O的切線,P為直線AB上一點,過點P作BC的平行線交直線BT于點E,交直線AC于點F.
(Ⅰ)如圖甲,求證:當點P在線段AB上時,PA•PB=PE•PF;
(Ⅱ)如圖乙,當點P在線段AB的延長線上時,(Ⅰ)的結(jié)論是否仍成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

選修4-1幾何證明選講
如圖,設(shè)△ABC的外接圓的切線AE與BC的延長線交于點E,∠BAC的平分線與BC交于點D.
求證:ED2=EC•EB.

查看答案和解析>>

(選修4—1幾何證明選講)如圖,內(nèi)接于,,直線于點C,于點.若的長為          .

查看答案和解析>>

 

1.(1)因為,所以

      又是圓O的直徑,所以

      又因為(弦切角等于同弧所對圓周角)

      所以所以

      又因為,所以相似

      所以,即

  (2)因為,所以

       因為,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因為,即

     解得

2.依題設(shè)有:

 令,則

 

 

3.將極坐標系內(nèi)的問題轉(zhuǎn)化為直角坐標系內(nèi)的問題

  點的直角坐標分別為

  故是以為斜邊的等腰直角三角形,

  進而易知圓心為,半徑為,圓的直角坐標方程為

      ,即

  將代入上述方程,得

  ,即

4.假設(shè),因為,所以。

又由,則,

所以,這與題設(shè)矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學歸納法進行證明.

1°.當n=1時,命題顯然成立;

2°.假設(shè)當n=k(kN*)時,命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對n=k+1.成立

由1°, 2°,命題對任意的正整數(shù)n成立.

6.(1)因為,,

      ,所以

       故事件A與B不獨立。

   (2)因為

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案