題目列表(包括答案和解析)
(本題滿分15分)設橢圓 C1:()的一個頂點與拋物線 C2: 的焦點重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 F2 的直線 與橢圓 C 交于 M,N 兩點.
(I)求橢圓C的方程;
(II)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
(III)若 AB 是橢圓 C 經(jīng)過原點 O 的弦,MN//AB,求證: 為定值.
(本小題滿分15分)已知點P(4,4),圓C:與橢圓E:
有一個公共點A(3,1),F1.F2分別是橢圓的左.右焦點,直線PF1與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的范圍.
(本小題滿分15分)
已知橢圓C:+=1的離心率為,左焦點為F(-1,0),
(1) 設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若,求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得S△OPE=S△OPG=S△OEG=?
(本小題滿分15分)已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1.F2分別是橢圓的左.右焦點,直線PF1與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的范圍.
1.(1)因為,所以
又是圓O的直徑,所以
又因為(弦切角等于同弧所對圓周角)
所以所以
又因為,所以相似
所以,即
(2)因為,所以,
因為,所以
由(1)知:。所以
所以,即圓的直徑
又因為,即
解得
2.依題設有:
令,則
3.將極坐標系內(nèi)的問題轉(zhuǎn)化為直角坐標系內(nèi)的問題
點的直角坐標分別為
故是以為斜邊的等腰直角三角形,
進而易知圓心為,半徑為,圓的直角坐標方程為
,即
將代入上述方程,得
,即
4.假設,因為,所以。
又由,則,
所以,這與題設矛盾
又若,這與矛盾
綜上可知,必有成立
同理可證也成立
命題成立
5. 解:由a1=S1,k=.下面用數(shù)學歸納法進行證明.
1°.當n=1時,命題顯然成立;
2°.假設當n=k(kN*)時,命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對n=k+1.成立
由1°, 2°,命題對任意的正整數(shù)n成立.
6.(1)因為,,
,所以
故事件A與B不獨立。
(2)因為
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com