查看更多

 

題目列表(包括答案和解析)

(本小題共14分)

如圖,在三棱錐中,,。

(Ⅰ)求證:;

(Ⅱ)求二面角的大小。

查看答案和解析>>

(本小題共14分)

已知橢圓的離心率為

   (I)若原點到直線的距離為求橢圓的方程;

   (II)設過橢圓的右焦點且傾斜角為的直線和橢圓交于A,B兩點.

        (i)當,求b的值;

        (ii)對于橢圓上任一點M,若,求實數(shù)滿足的關系式.

查看答案和解析>>

(本小題共14分)

    已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且

   (I)求橢圓的方程;

   (II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

(本小題共14分)如圖,在三棱錐中,底面

,點,分別在棱上,且(Ⅰ)求證:平面;(Ⅱ)當的中點時,求與平面所成的角的大;(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

(本小題共14分)

設函數(shù)

(Ⅰ)若曲線在點處與直線相切,求的值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點。

查看答案和解析>>

一、選擇題:本大題共8個小題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

B

二、填空題:本大題共6個小題,每小題5分,共30分

9.60   10. 4    11.    12. 2    13.  14. -2;1

三、解答題: 本大題共6個小題,共80分。

15. (本小題共13分)已知函數(shù)

(Ⅰ)求函數(shù)的定義域;   (Ⅱ)求函數(shù)在區(qū)間上的最值。

解:(Ⅰ)由題意                  

所求定義域為  {}                             …………4分

(Ⅱ)

                           …………9分

   知   ,

所以當時,取得最大值為;                   …………11分

時,取得最小值為0 。                   …………13分

16.(本小題共13分)已知數(shù)列中,,當時,函數(shù)取得極值。(Ⅰ)求數(shù)列的通項;(Ⅱ)在數(shù)列中,,求的值

解:(Ⅰ)     由題意    得    ,   …………6分

  所以 數(shù)列是公比為的等比數(shù)列  所以   …………8分

(Ⅱ) 因為   ,                 …………10分

所以    ,,……,

疊加得           把代入得   =       …………13分

17. (本小題共14分)

如圖,在正三棱柱中,,的中點,點上,。

(Ⅰ)求所成角的正弦值;                

(Ⅱ)證明;(Ⅲ) 求二面角的大小.

解:(Ⅰ)在正三棱柱中,   

,又是正△ABC邊的中點,

,         

所成角

又     sin∠=                          …………5分

(Ⅱ)證明:  依題意得   ,,

 因為    由(Ⅰ)知, 而

所以              所以                     …………9分

(Ⅲ) 過C作,作,連接

  ,   …………11分  

      是所求二面角的平面角

,      

二面角的大小為                                …………14分

18. (本小題共13分)

某校高二年級開設《幾何證明選講》及《坐標系與參數(shù)方程》兩個模塊的選修科目。每名學生可以選擇參加一門選修,參加兩門選修或不參加選修。已知有60%的學生參加過《幾何證明選講》的選修,有75%的學生參加過《坐標系與參數(shù)方程》的選修,假設每個人對選修科目的選擇是相互獨立的,且各人的選擇相互之間沒有影響。

(Ⅰ)任選一名學生,求該生參加過模塊選修的概率;

(Ⅱ)任選3名學生,記為3人中參加過模塊選修的人數(shù),求的分布列和期望。

解:(Ⅰ)設該生參加過《幾何證明選講》的選修為事件A,

參加過《坐標系與參數(shù)方程》的選修為事件B, 該生參加過模塊選修的概率為P,

則 該生參加過模塊選修的概率為0.9                                 …………6分

(另:

(Ⅱ) 可能取值0,1,2,3

    =0.001,=0.027

=0.243,   =0.729             …………10分

0

1

2

3

0.001

0.027

0.243

0.729

的分布列為

                                            …………13分

19. (本小題共13分)

           已知分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點M。(Ⅰ)求動點M的軌跡的方程;(Ⅱ)過點作直線交曲線于兩個不同的點P和Q,設=,若∈[2,3],求的取值范圍。

解:(Ⅰ)設M,則,由中垂線的性質(zhì)知

||=     化簡得的方程為                …………3分

(另:由知曲線是以x軸為對稱軸,以為焦點,以為準線的拋物線

    所以  ,         則動點M的軌跡的方程為

(Ⅱ)設,由=  知        ①

又由在曲線上知  ②

由  ①  ②       解得    所以 有           …………8分

===     …………10分

    有 在區(qū)間上是增函數(shù),

,進而有 ,所以的取值范圍是 ……13分

20. (本小題共14分)

     函 數(shù)  是 定 義 在R上 的 偶 函 數(shù),且時,

,記函數(shù)的圖像在處的切線為,

(Ⅰ) 求上的解析式;

(Ⅱ) 點列上,

依次為x軸上的點,

如圖,當時,點構成以為底邊

的等腰三角形。若,求數(shù)列的通項公式;

(Ⅲ)在 (Ⅱ)的條件下,是否存在實數(shù)a使得數(shù)列是等差數(shù)列?如果存在,寫出的一個值;如果不存在,請說明理由。

解:(Ⅰ) 函數(shù)是定義在R上的偶函數(shù),且

;是周期為2的函數(shù)         …………1分

 

可知=-4                    …………4分

(Ⅱ) 函數(shù)的圖像在處的切線為,且

切線過點且斜率為1,切線的方程為y=x+1                …………6分

上,有        即

構成以為底邊的等腰三角形… ①

同理… ②     兩式相減 得          

                                   …………11分

(Ⅲ) 假設是等差數(shù)列 ,則                  …………14分

故存在實數(shù)a使得數(shù)列是等差數(shù)列。

 

 


同步練習冊答案