題目列表(包括答案和解析)
(08年上虞市質檢一理)已知橢圓C1: (0<a<,0<b<2)與橢圓C2:有相同的焦點. 直線L:y=k(x+1)與兩個橢圓的四個交點,自上而下順次記為A、B、C、D.
(I)求線段BC的長(用k和a表示);
(II)是否存在這樣的直線L,使線段AB、BC、CD的長按此順序構成一個等差數(shù)列.請說明詳細的理由.
(滿分12分)直線l 與拋物線y2 = 4x 交于兩點A、B,O 為原點,且= -4.
(I) 求證:直線l 恒過一定點;
(II) 若 4≤| AB | ≤,求直線l 的斜率k 的取值范圍;
(Ⅲ) 設拋物線的焦點為F,∠AFB = θ,試問θ 角能否等于120°?若能,求出相應的直線l 的方程;若不能,請說明理由.
(本題滿分12分)
如圖6,在平面直角坐標系中,設點,直線:,點在直線上移動,
是線段與軸的交點, .
(I)求動點的軌跡的方程;
(II)設圓過,且圓心在曲線上,是圓在軸上截得的弦,當運動時弦長是否為定值?請說明理由.
由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某中學隨機抽取16名學生,經校醫(yī)用對數(shù)視力表檢査得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:
(I )若視力測試結果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(II)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望,據(jù)此估計該校高中學生(共有5600人)好視力的人數(shù)
(本小題滿分12分)
如圖,在邊長為4的菱形中,.點分別在邊上,點與點不重合,,.沿將翻折到的位置,使平面⊥平面.
(1)求證:⊥平面;
(2)當取得最小值時,請解答以下問題:
(i)求四棱錐的體積;
(ii)若點滿足= (),試探究:直線與平面所成角的大小是否一定大于?并說明理由.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com