(Ⅰ)①當直線垂直于軸時.則此時直線方程為.與圓的兩個交點坐標為和.其距離為.滿足題意――――――――――――――――2分 查看更多

 

題目列表(包括答案和解析)

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結論直線與曲線總有兩個公共點.

然后設點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結論)

………………6分

設點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,        ………………10分

也就是,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>


同步練習冊答案