(Ⅱ)求兩人各射擊4次.甲恰好擊中目標(biāo)2次.且乙恰好擊中目標(biāo)3次的概率 查看更多

 

題目列表(包括答案和解析)

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
,假設(shè)兩人每次射擊是否擊中目標(biāo)相互之間沒有影響.
(Ⅰ)求甲射擊5次,有兩次未擊中目標(biāo)的概率;
(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問:乙恰好射擊4次后;被中止射擊的概率是多少;
(2)若共有三個(gè)目標(biāo)靶,甲先對一目標(biāo)射擊,若甲沒有射中,則乙再對目標(biāo)補(bǔ)射,若乙射中,則二人對第二目標(biāo)射擊,若乙也沒有射中,則停止射擊.問:共射中兩個(gè)目標(biāo)的概率,并求射中目標(biāo)靶的期望.

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是。假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響。

(Ⅰ)求甲射擊4次,至少1次未擊中目標(biāo)的概率;

(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;

(Ⅲ)假設(shè)兩人連續(xù)兩次未擊中目標(biāo),則停止射擊。問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人每次射擊是否擊中目標(biāo)相互之間沒有影響  

(Ⅰ)求甲射擊5次,有兩次未擊中目標(biāo)的概率;

(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率

查看答案和解析>>

 

一、選擇題:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設(shè)“甲射擊5次,有兩次未擊中目標(biāo)”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標(biāo)的概率為            …………5分

   (Ⅱ)設(shè)“兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因?yàn)樗睦忮FP―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標(biāo)系又PA=AD=2,

      設(shè)則有

      同理可得

      即得…………………………8分

      而平面PAB的法向量可為

      故所求平面AMN與PAB所成銳二面角的大小為…………12分

      20.解:(Ⅰ)∵為奇函數(shù),

      ………………………………………2分

      的最小值為

      又直線的斜率為

      因此,

      ,  ………………………………………5分

      (Ⅱ)由(Ⅰ)知  

         ∴,列表如下:

      極大

      極小

         所以函數(shù)的單調(diào)增區(qū)間是…………8分

      ,,

      上的最大值是,最小值是………12分

      21.解:(Ⅰ)設(shè)d、q分別為數(shù)列、數(shù)列的公差與公比.

      由題可知,分別加上1,1,3后得2,2+d,4+2d

      是等比數(shù)列的前三項(xiàng),

      ……………4分

      由此可得

      …………………………6分

         (Ⅱ)

      當(dāng)

      當(dāng)

      ①―②,得

      ………………9分

      在N*是單調(diào)遞增的,

      ∴滿足條件恒成立的最小整數(shù)值為……12分

      22.解:(Ⅰ)∵雙曲線方程為

      ,

      ∴雙曲線方程為 ,又曲線C過點(diǎn)Q(2,),

      ∴雙曲線方程為    ………………5分

      (Ⅱ)∵,∴M、B2、N三點(diǎn)共線 

      ,   ∴

      (1)當(dāng)直線垂直x軸時(shí),不合題意 

      (2)當(dāng)直線不垂直x軸時(shí),由B1(0,3),B2(0,-3),

      可設(shè)直線的方程為,①

      ∴直線的方程為   ②

      由①,②知  代入雙曲線方程得

      ,得

      解得 , ∴,

      故直線的方程為      ………………12分

       

       

       

       

       

       

       

       


      同步練習(xí)冊答案