3 若函數(shù)的反函數(shù)為 查看更多

 

題目列表(包括答案和解析)

3、若函數(shù)f(x)存在反函數(shù)f-1(x),且函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))處的切線方程為2x-y+3=0,則函數(shù)f-1(x)的圖象在點(diǎn)(f(x0),x0)處的切線方程為( 。

查看答案和解析>>

5、若函數(shù)f(x)=log2x-1的反函數(shù)為y=g(x),則方程g(x)=16的解為
3

查看答案和解析>>

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

若函數(shù)f(x)與g(x)=2-x互為反函數(shù),則f(3+2x-x2)的單調(diào)遞增區(qū)間是
[1,3)
[1,3)

查看答案和解析>>

若函數(shù)f(x)存在反函數(shù)f-1(x),且函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))處的切線方程為2x-y+3=0,則函數(shù)f-1(x)的圖象在點(diǎn)(f(x0),x0)處的切線方程為( 。
A.x-2y-3=0B.2x-y+3=0C.x-2y+3=0D.2x+y-3=0

查看答案和解析>>

 

一、選擇題:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設(shè)“甲射擊5次,有兩次未擊中目標(biāo)”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標(biāo)的概率為            …………5分

   (Ⅱ)設(shè)“兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因?yàn)樗睦忮FP―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標(biāo)系又PA=AD=2,

設(shè)則有

同理可得

即得…………………………8分

而平面PAB的法向量可為

故所求平面AMN與PAB所成銳二面角的大小為…………12分

20.解:(Ⅰ)∵為奇函數(shù),

………………………………………2分

的最小值為

又直線的斜率為

因此,

,  ………………………………………5分

(Ⅱ)由(Ⅰ)知  

   ∴,列表如下:

極大

極小

   所以函數(shù)的單調(diào)增區(qū)間是…………8分

,

上的最大值是,最小值是………12分

21.解:(Ⅰ)設(shè)d、q分別為數(shù)列、數(shù)列的公差與公比.

由題可知,分別加上1,1,3后得2,2+d,4+2d

是等比數(shù)列的前三項(xiàng),

……………4分

由此可得

…………………………6分

   (Ⅱ)

當(dāng),

當(dāng),

①―②,得

………………9分

在N*是單調(diào)遞增的,

∴滿足條件恒成立的最小整數(shù)值為……12分

22.解:(Ⅰ)∵雙曲線方程為

,

∴雙曲線方程為 ,又曲線C過點(diǎn)Q(2,),

∴雙曲線方程為    ………………5分

(Ⅱ)∵,∴M、B2、N三點(diǎn)共線 

,   ∴

(1)當(dāng)直線垂直x軸時,不合題意 

(2)當(dāng)直線不垂直x軸時,由B1(0,3),B2(0,-3),

可設(shè)直線的方程為,①

∴直線的方程為   ②

由①,②知  代入雙曲線方程得

,得,

解得 , ∴,

故直線的方程為      ………………12分

 

 

 

 

 

 

 

 


同步練習(xí)冊答案
<dfn id="scigg"><dl id="scigg"></dl></dfn>
<menu id="scigg"><code id="scigg"></code></menu>