查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

   (1)求MA的長(zhǎng);w.w.w.k.s.5.u.c.o.m      

   (2)求點(diǎn)C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長(zhǎng)14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過(guò)討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長(zhǎng);(2)矩形廠房利用舊墻的一面邊長(zhǎng)x≥14.問(wèn)如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

CBCDB    DADCA

二、填空題:本大題共5小題,每小題5分,共25分.

11.90       12.[)       13.       14.1 ;3899       15.

三、解答題:本大題共6小題,共75分.

16.(本小題滿分13分)

解:(1)

……3分……4分

的單調(diào)區(qū)間,k∈Z。6分

(2)由得 .....7分

的內(nèi)角......9分

       ...11分

  ....12分

17. (本小題滿分13分)

解:(1)記“甲擊中目標(biāo)的次數(shù)減去乙擊中目標(biāo)的次數(shù)為2”為事件A,則

,解得.....4分

(2)的所有可能取值為0,1,2.記“在第一次射擊中甲擊中目標(biāo)”為事件;記“在第一次射擊中乙擊中目標(biāo)”為事件.

   則,

  

   ,.....10分

所以的分布列為

0

1

2

P

=.....12分

18. (本小題滿分13分)

解:(1)當(dāng)中點(diǎn)時(shí),有平面

證明:連結(jié),連結(jié)

∵四邊形是矩形  ∴中點(diǎn)

中點(diǎn),從而

平面,平面

平面.....4分

(2)建立空間直角坐標(biāo)系如圖所示,

,,,,

.....6分

所以,.

設(shè)為平面的法向量,則有,即

,可得平面的一個(gè)法向量為,.....9分

而平面的一個(gè)法向量為 .....10分

所以

所以二面角的余弦值為 .....12分

(用其它方法解題酌情給分)

19.(本小題滿分12分)

解:(1)由題意知

因此數(shù)列是一個(gè)首項(xiàng).公比為3的等比數(shù)列,所以......2分

=100―(1+3+9)

所以=87,解得

因此數(shù)列是一個(gè)首項(xiàng),公差為―5的等差數(shù)列,

所以 .....4分

 (2) 求視力不小于5.0的學(xué)生人數(shù)為.....7分

(3) 由   ①

可知,當(dāng)時(shí),  ②

①-②得,當(dāng)時(shí), , www.zxsx.com

 , .....11分

因此數(shù)列是一個(gè)從第2項(xiàng)開(kāi)始的公比為3的等比數(shù)列,

數(shù)列的通項(xiàng)公式為.....13分

20.(本小題滿分12分)

解:(1)由于,

     ∴,解得,

     ∴橢圓的方程是.....3分
(2)∵,∴三點(diǎn)共線,

,設(shè)直線的方程為,

   由消去得:

   由,解得.....6分

   設(shè),由韋達(dá)定理得①,

    又由得:,∴②.

將②式代入①式得:,

    消去得: .....10分

    設(shè),當(dāng)時(shí), 是減函數(shù),

    ∴, ∴, www.zxsx.com

解得,又由,

∴直線AB的斜率的取值范圍是.....13分

21. (本小題滿分12分)

 (1)解:

     ①若

,則,∴,即.

       ∴在區(qū)間是增函數(shù),故在區(qū)間的最小值是

.....2分

     ②若

,得.

又當(dāng)時(shí),;當(dāng)時(shí),

在區(qū)間的最小值是.....4分

   (2)證明:當(dāng)時(shí),,則,

      ∴,

      當(dāng)時(shí),有,∴內(nèi)是增函數(shù),

      ∴,

內(nèi)是增函數(shù),www.zxsx.com

      ∴對(duì)于任意的,恒成立.....7分

   (3)證明:

,

      令

      則當(dāng)時(shí),

                      ,.....10分

      令,則,www.zxsx.com

當(dāng)時(shí), ;當(dāng)時(shí),;當(dāng)時(shí),,

是減函數(shù),在是增函數(shù),

,

,即不等式對(duì)于任意的恒成立.....13分

 

 


同步練習(xí)冊(cè)答案