(2)是否存在.使同時滿足以下條件 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)同時滿足以下兩個條件:①f(x)在其定義域上是單調(diào)函數(shù);②在f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱函數(shù)f(x)為“自強”函數(shù).
(1)判斷函數(shù)f(x)=2x-1是否為“自強”函數(shù)?若是,則求出a,b若不是,說明理由;
(2)若函數(shù)f(x)=
2x-1
+t是“自強”函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù).

① 對任意的,總有;

② 當時,總有成立.

已知函數(shù)是定義在上的函數(shù).

(1)試問函數(shù)是否為函數(shù)?并說明理由;

(2)若函數(shù)函數(shù),求實數(shù)的值;

(3)在(2)的條件下,是否存在實數(shù),使方程恰有兩解?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知定義域為的函數(shù)同時滿足以下三個條件:

[1] 對任意的,總有;

[2] ;

[3] 若,,且,則有成立,

并且稱為“友誼函數(shù)”,請解答下列各題:

(1)若已知為“友誼函數(shù)”,求的值;

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

(3)已知為“友誼函數(shù)”,假定存在,使得,

求證:.

查看答案和解析>>

已知定義域為的函數(shù)同時滿足以下三個條件:

[1] 對任意的,總有;

[2] ;

[3] 若,,且,則有成立,

并且稱為“友誼函數(shù)”,請解答下列各題:

(1)若已知為“友誼函數(shù)”,求的值;

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

(3)已知為“友誼函數(shù)”,假定存在,使得

求證:.

查看答案和解析>>

已知定義域為的函數(shù)同時滿足以下三個條件:
(1) 對任意的,總有;(2);(3) 若,,且,則有成立,則稱為“友誼函數(shù)”,請解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當且僅當 時等號成立。)

  (當且僅當 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

      20081226

      (2)

        由

      分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

      (3) 列表如下:

      0

      0

      1

      0

      ―1

      0

      19.解:(I)由,則.

      兩式相減得. 即.          

      時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

      (Ⅱ)由(I)知.∴            

      ①當為偶數(shù)時,,

      ∴原不等式可化為,即.故不存在合條件的.      

      ②當為奇數(shù)時,.

      原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

      20.解:(1)依題意,得

         (2)令

      在此區(qū)間為增函數(shù)

      在此區(qū)間為減函數(shù)

      在此區(qū)間為增函數(shù)

      處取得極大值又

      因此,當

      要使得不等式

      所以,存在最小的正整數(shù)k=2007,

      使得不等式恒成立!7分

        (3)(方法一)

           

      又∵由(2)知為增函數(shù),

      綜上可得

      (方法2)由(2)知,函數(shù)

      上是減函數(shù),在[,1]上是增函數(shù)又

      所以,當時,-

      又t>0,

      ,且函數(shù)上是增函數(shù),

       

      綜上可得

      21.解:(1) 

      ,

      函數(shù)有一個零點;當時,,函數(shù)有兩個零點。

         (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

      由②知對,都有

      又因為恒成立,  ,即,即

      ,

      時,,

      其頂點為(-1,0)滿足條件①,又,

      都有,滿足條件②。∴存在,使同時滿足條件①、②。

         (3)令,則

      ,

      內(nèi)必有一個實根。即,

      使成立。

       

       

       

       

       


      同步練習冊答案