9.已知是首項(xiàng)為1.公比為的等比數(shù)列. 查看更多

 

題目列表(包括答案和解析)

已知是首項(xiàng)為1,公比為的等比數(shù)列,

,,(其中表示的最大整數(shù),如[2.5]=2).如果數(shù)列有極限,那么公比的取值范圍是

A.       B.

C.       D.

查看答案和解析>>

已知是首項(xiàng)為2,公比為的等比數(shù)列,為它的前項(xiàng)和.

(1)用表示

(2)是否存在自然數(shù),使得成立.

查看答案和解析>>

已知是首項(xiàng)為2,公比為的等比數(shù)列,為它的前項(xiàng)和.
(1)用表示;
(2)是否存在自然數(shù),使得成立.

查看答案和解析>>

已知是首項(xiàng)為1,公比為2的等比數(shù)列,對于滿足的整數(shù)k,數(shù)列確定,設(shè)

為數(shù)列

(1)當(dāng)

(2)求當(dāng)S20取最小值時(shí)k的值.

查看答案和解析>>

(已知是首項(xiàng)為1,公差為2的等差數(shù)列,表示的前項(xiàng)和.
(1)求;
(2)設(shè)是首項(xiàng)為2的等比數(shù)列,公比滿足,求的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時(shí)等號成立。)

  (當(dāng)且僅當(dāng) 時(shí)等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項(xiàng)為

  (2)由于   由(1)得 

=

18.解:(1)因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image195.gif" >     圖象的一條對稱軸是直線 

    20081226

    (2)

      由

    分別令的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

    (3) 列表如下:

    0

    0

    1

    0

    ―1

    0

    19.解:(I)由,則.

    兩式相減得. 即.          

    時(shí),.∴數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.

    (Ⅱ)由(I)知.∴            

    ①當(dāng)為偶數(shù)時(shí),,

    ∴原不等式可化為,即.故不存在合條件的.      

    ②當(dāng)為奇數(shù)時(shí),.

    原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

    20.解:(1)依題意,得

       (2)令

    當(dāng)在此區(qū)間為增函數(shù)

    當(dāng)在此區(qū)間為減函數(shù)

    當(dāng)在此區(qū)間為增函數(shù)

    處取得極大值又

    因此,當(dāng)

    要使得不等式

    所以,存在最小的正整數(shù)k=2007,

    使得不等式恒成立!7分

      (3)(方法一)

         

    又∵由(2)知為增函數(shù),

    綜上可得

    (方法2)由(2)知,函數(shù)

    上是減函數(shù),在[,1]上是增函數(shù)又

    所以,當(dāng)時(shí),-

    又t>0,

    ,且函數(shù)上是增函數(shù),

     

    綜上可得

    21.解:(1) 

    當(dāng)時(shí)

    函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。

       (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

    由②知對,都有

    又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image514.gif" >恒成立,  ,即,即

    ,

    當(dāng)時(shí),,

    其頂點(diǎn)為(-1,0)滿足條件①,又,

    都有,滿足條件②。∴存在,使同時(shí)滿足條件①、②。

       (3)令,則

    ,

    內(nèi)必有一個(gè)實(shí)根。即,

    使成立。

     

     

     

     

     


    同步練習(xí)冊答案