(Ⅱ)求三棱錐的體積, 查看更多

 

題目列表(包括答案和解析)

三棱錐P-ABC,底面ABC為邊長為2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點(diǎn),AD=2DP,O為底面三角形中心.
(Ⅰ)求證DO∥面PBC;
(Ⅱ)求證:BD⊥AC;
(Ⅲ)求面DOB截三棱錐P-ABC所得的較大幾何體的體積.

查看答案和解析>>

三棱錐P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;

(2)若,PB與底面ABC成60°角,分別是的中點(diǎn),是線段上任意一動點(diǎn)(可與端點(diǎn)重合),求多面體的體積。

 

查看答案和解析>>

三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;
(2)若,,PB與底面ABC成60°角,分別是的中點(diǎn),是線段上任意一動點(diǎn)(可與端點(diǎn)重合),求多面體的體積。

查看答案和解析>>

三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;
(2)若,,PB與底面ABC成60°角,分別是的中點(diǎn),是線段上任意一動點(diǎn)(可與端點(diǎn)重合),求多面體的體積。

查看答案和解析>>

棱錐的底面是正三角形,邊長為1,棱錐的一條側(cè)棱與底面垂直,其余兩條側(cè)棱與底面所成角都等于數(shù)學(xué)公式,設(shè)D為BC中點(diǎn).
(1)求這個棱錐的側(cè)面積和體積;
(2)求異面直線PD與AB所成角的大小.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則;

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當(dāng)時,。

18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設(shè)“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為

(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為

設(shè)“方程無實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面,

   又平面,故。

(Ⅱ)在中,過點(diǎn)于點(diǎn),則平面

由已知及(Ⅰ)得

(Ⅲ)在中過點(diǎn)于點(diǎn),在中過點(diǎn)于點(diǎn),連接,則由

  由平面平面,則平面

再由平面,又平面,則平面

  故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個三等分點(diǎn)時,平面

  20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,

(Ⅱ)由

,故數(shù)列適合條件①

,則當(dāng)時,有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設(shè)點(diǎn),則,

,,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當(dāng)時,恒有,

在區(qū)間上恒成立。

,解得

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點(diǎn),

即方程恰有3個不等的實(shí)數(shù)根。

是方程的一個實(shí)數(shù)根,則

方程有兩個非零實(shí)數(shù)根,

故滿足條件的存在,其取值范圍是

 

 


同步練習(xí)冊答案