右圖是2008年“隆力奇 杯第13屆CCTV青年歌手電視大獎 賽上某一位選手的部分得分的莖葉統(tǒng)計圖.去掉一個最高分 和一個最低分后.所剩數(shù)據(jù)的方差為 . 查看更多

 

題目列表(包括答案和解析)

右圖是2008年“隆力奇”杯第13屆CCTV青年歌手電視大獎賽上某一位選手的部分得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為            

 

 

 

 

 

 

 

查看答案和解析>>

右圖是2008年“隆力奇”杯第13屆CCTV青年歌手電視大獎賽上某一位選手的部分得分的莖葉統(tǒng)計圖,則該選手的所有得分數(shù)據(jù)的中位數(shù)與眾數(shù)之和為           

查看答案和解析>>

右圖是2008年“隆力奇”杯第13屆CCTV青年歌手電視大獎賽上某一位選手的部分得分的莖葉統(tǒng)計圖,則該選手的所有得分數(shù)據(jù)的中位數(shù)與眾數(shù)之和為           

查看答案和解析>>

右圖是2008年“隆力奇”杯第13屆CCTV青年歌手電視大獎  賽上某一位選手的部分得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為      ▲     

查看答案和解析>>

右圖是2008年“隆力奇”杯第13屆CCTV青年歌手電視大獎賽上某一位選手的部分得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為           

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答題:本大題共6小題,共90分.

15.(1)設集合中的點為事件,  區(qū)域的面積為36,  區(qū)域的面積為18

(2)設點在集合為事件,  甲、乙兩人各擲一次骰子所得的點數(shù)為36個,其中在集合中的點有21個,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:為銳角          

由已知得:, 角為銳角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)證明:連接,取中點,連接

在等腰梯形中,,AB=AD,,E是BC的中點

都是等邊三角形   

平面    平面

平面   

(2)證明:連接于點,連接

,且    四邊形是平行四邊形   是線段的中點

是線段的中點     

平面   平面

(3)與平面不垂直.

證明:假設平面,  則

平面  

,平面    平面   

,這與矛盾

與平面不垂直.

18.(1)設橢圓的標準方程為

依題意得:,得   ∴  所以,橢圓的標準方程為

(2)設過點的直線方程為:,代入橢圓方程得;

  (*)

依題意得:,即 

得:,且方程的根為  

當點位于軸上方時,過點垂直的直線與軸交于點,

直線的方程是:,  

所求圓即為以線段DE為直徑的圓,故方程為:

同理可得:當點位于軸下方時,圓的方程為:

(3)設,=得:,代入

(**)    要證=,即證

由方程組(**)可知方程組(1)成立,(2)顯然成立.∴=

19..解(1)的解集有且只有一個元素,

當a=4時,函數(shù)上遞減

故存在,使得不等式成立

當a=0時,函數(shù)上遞增

故不存在,使得不等式成立

綜上,得a=4,…………………………5分

(2)由(1)可知

當n=1時,

時,

(3),

+

               =+>

               >    

20解:(1)由的定義可知,(對所有實數(shù))等價于

(對所有實數(shù))這又等價于,即

對所有實數(shù)均成立.        (*)

  由于的最大值為,

  故(*)等價于,即,這就是所求的充分必要條件

(2)分兩種情形討論

     (i)當時,由(1)知(對所有實數(shù)

則由易知

再由的單調性可知,

函數(shù)在區(qū)間上的單調增區(qū)間的長度

(參見示意圖1)

(ii)時,不妨設,則,于是

   當時,有,從而;

時,有

從而  ;

時,,及,由方程

      解得圖象交點的橫坐標為

                          ⑴

 

顯然,

這表明之間。由⑴易知

 

綜上可知,在區(qū)間上,   (參見示意圖2)

故由函數(shù)的單調性可知,在區(qū)間上的單調增區(qū)間的長度之和為,由于,即,得

          ⑵

故由⑴、⑵得 

綜合(i)(ii)可知,在區(qū)間上的單調增區(qū)間的長度和為

 

 

 

 

                                    

 


同步練習冊答案