當(dāng)為奇數(shù)時(shí),有,即 ① 查看更多

 

題目列表(包括答案和解析)

動(dòng)物中的數(shù)學(xué)“天才”

  蜜蜂蜂房是嚴(yán)格的六角柱狀體,它的一端是平整的六角形開(kāi)口,另一端是封閉的六角菱錐形的底,由三個(gè)相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅(jiān)固又省料.蜂房的巢壁厚0.073毫米,誤差極小.

  丹頂鶴總是成群結(jié)隊(duì)遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計(jì)算還表明“人”字形夾角的一半——即每邊與鶴群前進(jìn)方向的夾角為54度44分8秒!而金剛石結(jié)晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結(jié)的“八卦”形網(wǎng),是既復(fù)雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網(wǎng)那樣勻稱的圖案.

  冬天,貓睡覺(jué)時(shí)總是把身體抱成一個(gè)球形,這其間也有數(shù)學(xué),因?yàn)榍蛐问股眢w的表面積最小,從而散發(fā)的熱量也最少.

  真正的數(shù)學(xué)“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學(xué)家發(fā)現(xiàn)3億5千萬(wàn)年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學(xué)家告訴我們,當(dāng)時(shí)地球一天僅21.9小時(shí),一年不是365天,而是400天.

1.同學(xué)們,大自然中有許多有關(guān)數(shù)學(xué)的奧妙,許多現(xiàn)象有意無(wú)意地應(yīng)用著數(shù)學(xué),對(duì)于這些現(xiàn)象你有什么看法嗎?請(qǐng)你談?wù)勀銓?duì)大自然中的數(shù)學(xué)現(xiàn)象的認(rèn)識(shí).

2.把你發(fā)現(xiàn)的大自然中的數(shù)學(xué)問(wèn)題告訴你的同學(xué)和老師,讓他們也分享一下你認(rèn)識(shí)大自然的樂(lè)趣.

查看答案和解析>>

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若,證明:(i,n∈N*).

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問(wèn)

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則

即.

,可得,即

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且

(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無(wú)最大值或最小值?如有,寫出最大值或最小值。(本小問(wèn)不需要說(shuō)明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問(wèn)中,利用函數(shù)是定義在上的奇函數(shù),且。

解得,

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

解:(1)是奇函數(shù),

,,………………2分

,又,,

(2)任取,且,

,………………6分

,

,,

在(-1,1)上是增函數(shù)!8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案