D.E.F.則有(2)推論:平行于三角形一邊的直線截其他兩邊.所得的對應線段成比例. 查看更多

 

題目列表(包括答案和解析)

數(shù)學學習總是如數(shù)學知識自身的生長歷史一樣,往往起源于猜測中的發(fā)現(xiàn),我們所發(fā)現(xiàn)的不一定對,但是當利用我們已有的知識作為推理的前提論證之后,當所發(fā)現(xiàn)的在邏輯上沒有矛盾之后,就可以作為新的推理的前提,數(shù)學中稱之為定理.
(1)嘗試證明:
等腰三角形的探索中借助折紙發(fā)現(xiàn):直角三角形斜邊上的中線等于斜邊的一半.但是當時并未說明這個結論的合理.現(xiàn)在我們學些了矩形的判定和性質之后,就可以解決這個問題了.如圖1若在Rt△ABC中CD是斜邊AB的中線,則CD=
12
AB
,你能用矩形的性質說明這個結論嗎?請說明.
(2)遷移運用:利用上述結論解決下列問題:
①如圖2所示,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點,請你說明EF與AC的位置關系.
②如圖3所示,?ABCD中,以AC為斜邊作Rt△ACE,∠AEC=90°,且∠BED=90°,試說明平行四邊形ABCD是矩形.

查看答案和解析>>

數(shù)學學習總是如數(shù)學知識自身的生長歷史一樣,往往起源于猜測中的發(fā)現(xiàn),我們所發(fā)現(xiàn)的不一定對,但是當利用我們已有的知識作為推理的前提論證之后,當所發(fā)現(xiàn)的在邏輯上沒有矛盾之后,就可以作為新的推理的前提,數(shù)學中稱之為定理.
(1)嘗試證明:
等腰三角形的探索中借助折紙發(fā)現(xiàn):直角三角形斜邊上的中線等于斜邊的一半.但是當時并未說明這個結論的合理.現(xiàn)在我們學些了矩形的判定和性質之后,就可以解決這個問題了.如圖1若在Rt△ABC中CD是斜邊AB的中線,則數(shù)學公式,你能用矩形的性質說明這個結論嗎?請說明.
(2)遷移運用:利用上述結論解決下列問題:
①如圖2所示,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點,請你說明EF與AC的位置關系.
②如圖3所示,?ABCD中,以AC為斜邊作Rt△ACE,∠AEC=90°,且∠BED=90°,試說明平行四邊形ABCD是矩形.

查看答案和解析>>

實驗與探究
(1)在圖1、圖2、圖3中,給出平行四邊形ABCD的頂點A、B、D的坐標,寫出圖1、圖2、圖3中的頂點C的坐標,它們分別是______,______.
(2)在圖4中,給出平行四邊形ABCD的頂點A,B,D的坐標(如圖所示),求出頂點C的坐標(C點坐標用含a,b,c,d,e,f的代數(shù)式表示);


歸納與發(fā)現(xiàn)
(3)通過對圖1、圖2、圖3、圖4的觀察和頂點C的坐標的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標系中哪個位置,當其頂點C坐標為(m,n)(如圖4)時,則四個頂點的橫坐標a,c,m,e之間的等量關系為______;縱坐標b,d,n,f之間的等量關系為______(不必證明);
運用與推廣
(4)在同一直角坐標系中有雙曲線數(shù)學公式和三個點數(shù)學公式,H(2c,0)(其中c>0).問當c為何值時,該雙曲線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標.

查看答案和解析>>

實驗與探究
(1)在圖1、圖2、圖3中,給出平行四邊形ABCD的頂點A、B、D的坐標,寫出圖1、圖2、圖3中的頂點C的坐標,它們分別是
(5,2)、(e+c,d)
(5,2)、(e+c,d)
(e+c-a,d)
(e+c-a,d)

(2)在圖4中,給出平行四邊形ABCD的頂點A,B,D的坐標(如圖所示),求出頂點C的坐標(C點坐標用含a,b,c,d,e,f的代數(shù)式表示);


歸納與發(fā)現(xiàn)
(3)通過對圖1、圖2、圖3、圖4的觀察和頂點C的坐標的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標系中哪個位置,當其頂點C坐標為(m,n)(如圖4)時,則四個頂點的橫坐標a,c,m,e之間的等量關系為
m=c+e-a
m=c+e-a
;縱坐標b,d,n,f之間的等量關系為
n=d+f-b
n=d+f-b
(不必證明);
運用與推廣
(4)在同一直角坐標系中有雙曲線y=-
14
x
和三個點G(-
1
2
c,
5
2
c),S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).問當c為何值時,該雙曲線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標.

查看答案和解析>>


同步練習冊答案